scholarly journals Assessing Renewable Energy Sources for Electricity (RES-E) Potential using a CAPM-Analogous Multi-Stage Model

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3599 ◽  
Author(s):  
Martinez-Fernandez ◽  
deLlano-Paz ◽  
Calvo-Silvosa ◽  
Soares

Carbon mitigation is a major aim of the power-generation regulation. Renewable energy sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio. We include technological and environmental restrictions in the model. The optimization is carried out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards, we minimize its emission factor and risk. By combining these two results, we are able to draw an area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It is necessary to include all available renewable technologies in order to reduce the cost and the risk of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a low-carbon approach.

2019 ◽  
Vol 14 (3) ◽  
pp. 453-459
Author(s):  
Dawid P. Hanak ◽  
Vasilije Manovic

AbstractRenewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.


2020 ◽  
Author(s):  
Aleksandr Ivakhnenko ◽  
Beibarys Bakytzhan

<p>In global socioeconomic development facing climate change challenges to minimize the output of greenhouse gas (GHG) emissions and moving to a more low-carbon economy (LCE) the major driving force for success in achieving Sustainable Development Goals (SDGs) is the cost of energy generation. One of the main factors for energy source selection in the power supply and energy type generation process is the price parameters often influenced at different degree by government policies incentives, technological and demographic challenges in different countries. We research the energy sources situation and possible development trends for developing country Kazakhstan with resource-based economy. In general, the economic aspects affect the quality and quantity of energy generated from different sources with incentives for environmental concern. Traditional energy sources in Kazakhstan, such as coal, oil and natural gas remain low-cost in production due to high reserve base, which leads to steady growth in this area. In general, the cost for generating 1 kWh of energy from the cheapest carbon source of energy sub-bituminous coal is about 0.0024 $, for natural gas 0.0057 $, conventional oil 0.0152 $ (conventional diesel is 0.0664 $) and for expensive unconventional oil 0.0361 $, whereas renewable hydrocarbons could potentially become more competitive with unconventional oil production (methanol 0.0540 $, biodiesel 0.0837 $, bioethanol 0.1933 $ for generating 1 kWh). Furthermore, we consider the main non-traditional and renewable energy sources of energy from the sun, wind, water, and biofuels, hydrogen, methane, gasoline, uranium, and others. There is a difference between the breakeven prices of conventional gas and biomethane (0.0057 $ and 0.047 - 0.15 $ respectively averaging 0.0675 $ per 1 kWh for biomethane) which is often related to the difference in their production methods. The main advantage of biomethane is environmentally friendly production. We also propose an assessment of fuel by environmental characteristics, where one of the hazardous sources Uranium is forth cheap 0.0069 $ per kWh, but the environmental damage caused by its waste is the greatest. At the same time hydropower is seven times more expensive than uranium, but it does not cause direct health damage issues, however influencing significantly ecosystem balance. Hydrogen fuel is the most expensive among others. Overall in Kazakhstan energy-producing from the sun, wind and biogas is more expensive comparing with global trends from 0.4 to 5.5 cents per 1 kWh, but remains cheaper for hydropower. In addition, based on the research findings we analyzed the potential for sustainable non-renewable and renewable energy development in the future for the case of the resource-based economy in Kazakhstan. </p>


2012 ◽  
Vol 512-515 ◽  
pp. 2625-2628
Author(s):  
Jie Liu ◽  
Hai Bo Jiang ◽  
Hang Guo

This paper analyzed the feasibility of development and utilization of four kinds of renewable energy sources which are wind energy, wave energy and ocean current energy, solar energy and gave some specific recommendations about the use of wind power. The richness of four kinds of energy sources and some problems about the cost, reliability, installation, utilization and maintenance were systematically investigated. Studies have shown that on the coral reefs solar power generation has the more feasibility than wind power generation, and wave power generation and marine power generation have no feasibility within future ten years.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6943
Author(s):  
Akito Ozawa ◽  
Yuki Kudoh

Hydrogen and its energy carriers, such as liquid hydrogen (LH2), methylcyclohexane (MCH), and ammonia (NH3), are essential components of low-carbon energy systems. To utilize hydrogen energy, the complete environmental merits of its supply chain should be evaluated. To understand the expected environmental benefit under the uncertainty of hydrogen technology development, we conducted life-cycle inventory analysis and calculated CO2 emissions and their uncertainties attributed to the entire supply chain of hydrogen and NH3 power generation (co-firing and mono-firing) in Japan. Hydrogen was assumed to be produced from overseas renewable energy sources with LH2/MCH as the carrier, and NH3 from natural gas or renewable energy sources. The Japanese life-cycle inventory database was used to calculate emissions. Monte Carlo simulations were performed to evaluate emission uncertainty and mitigation factors using hydrogen energy. For LH2, CO2 emission uncertainty during hydrogen liquefaction can be reduced by using low-carbon fuel. For MCH, CO2 emissions were not significantly affected by power consumption of overseas processes; however, it can be reduced by implementing low-carbon fuel and waste-heat utilization during MCH dehydrogenation. Low-carbon NH3 production processes significantly affected power generation, whereas carbon capture and storage during NH3 production showed the greatest reduction in CO2 emission. In conclusion, reducing CO2 emissions during the production of hydrogen and NH3 is key to realize low-carbon hydrogen energy systems.


2021 ◽  
Vol 11 (13) ◽  
pp. 5907
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Anna Brzozowska ◽  
Jan Stebila

The European Union has set targets for renewable energy utilization. Poland is a member of the EU, and its authorities support an increase in renewable energy use. The background of this study is based on the role of renewable energy sources in improving energy security and mitigation of climate change. Agricultural waste is of a significant role in bioenergy. However, there is a lack of integrated methodology for the measurement of its potential. The possibility of developing an integrated evaluation methodology for renewable energy potential and its spatial distribution was assumed as the hypothesis. The novelty of this study is the integration of two renewable energy sources: crop residues and animal husbandry waste (for biogas). To determine agricultural waste energy potential, we took into account straw requirements for stock-raising and soil conservation. The total energy potential of agricultural waste was estimated at 279.94 PJ. It can cover up to 15% of national power generation. The spatial distribution of the agricultural residue energy potential was examined. This information can be used to predict appropriate locations for biomass-based power generation facilities. The potential reduction in carbon dioxide emissions ranges from 25.7 to 33.5 Mt per year.


2021 ◽  
Vol 13 (18) ◽  
pp. 10261
Author(s):  
J. Sadhik Basha ◽  
Tahereh Jafary ◽  
Ranjit Vasudevan ◽  
Jahanzeb Khan Bahadur ◽  
Muna Al Ajmi ◽  
...  

This critical review report highlights the enormous potentiality and availability of renewable energy sources in the Gulf region. The earth suffers from extreme air pollution, climate changes, and extreme problems due to the enormous usage of underground carbon resources applications materialized in industrial, transport, and domestic sectors. The countries under Gulf Cooperation Council, i.e., Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, mainly explore those underground carbon resources for crude oil extraction and natural gas production. As a nonrenewable resource, these are bound to be exhausted in the near future. Hence, this review discusses the importance and feasibility of renewable sources in the Gulf region to persuade the scientific community to launch and explore renewable sources to obtain the maximum benefit in electric power generation. In most parts of the Gulf region, solar and wind energy sources are abundantly available. However, attempts to harness those resources are very limited. Furthermore, in this review report, innovative areas of advanced research (such as bioenergy, biomass) were proposed for the Gulf region to extract those resources at a higher magnitude to generate surplus power generation. Overall, this report clearly depicts the current scenario, current power demand, currently installed capacities, and the future strategies of power production from renewable power sources (viz., solar, wind, tidal, biomass, and bioenergy) in each and every part of the Gulf region.


2020 ◽  
Vol 10 (18) ◽  
pp. 6398
Author(s):  
Meysam Majidi Nezhad ◽  
Riyaaz Uddien Shaik ◽  
Azim Heydari ◽  
Armin Razmjoo ◽  
Niyazi Arslan ◽  
...  

The elaboration of a methodology for accurately assessing the potentialities of blue renewable energy sources is a key challenge among the current energy sustainability strategies all over the world. Consequentially, many researchers are currently working to improve the accuracy of marine renewable assessment methods. Nowadays, remote sensing (RSs) satellites are used to observe the environment in many fields and applications. These could also be used to identify regions of interest for future energy converter installations and to accurately identify areas with interesting potentials. Therefore, researchers can dramatically reduce the possibility of significant error. In this paper, a comprehensive SWOT (strengths, weaknesses, opportunities and threats) analysis is elaborated to assess RS satellite potentialities for offshore wind (OW) estimation. Sicily and Sardinia—the two biggest Italian islands with the highest potential for offshore wind energy generation—were selected as pilot areas. Since there is a lack of measuring instruments, such as cup anemometers and buoys in these areas (mainly due to their high economic costs), an accurate analysis was carried out to assess the marine energy potential from offshore wind. Since there are only limited options for further expanding the measurement over large areas, the use of satellites makes it easier to overcome this limitation. Undoubtedly, with the advent of new technologies for measuring renewable energy sources (RESs), there could be a significant energy transition in this area that requires a proper orientation of plans to examine the factors influencing these new technologies that can negatively affect most of the available potential. Satellite technology for identifying suitable areas of wind power plants could be a powerful tool that is constantly increasing in its applications but requires good planning to apply it in various projects. Proper planning is only possible with a better understanding of satellite capabilities and different methods for measuring available wind resources. To this end, a better understanding in interdisciplinary fields with the exchange of updated information between different sectors of development, such as universities and companies, will be most effective. In this context, by reviewing the available satellite technologies, the ability of this tool to measure the marine renewable energies (MREs) sector in large and small areas is considered. Secondly, an attempt is made to identify the strengths and weaknesses of using these types of tools and techniques that can help in various projects. Lastly, specific scenarios related to the application of such systems in existing and new developments are reviewed and discussed.


Sign in / Sign up

Export Citation Format

Share Document