Development of a fully deterministic simulation model for organic Rankine cycle operating under off-design conditions

2021 ◽  
pp. 118149
Author(s):  
Jinwoo Oh ◽  
Yunjae Park ◽  
Hoseong Lee
2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Pantelis N. Botsaris ◽  
Alexandros G. Pechtelidis ◽  
Konstantinos A. Lymperopoulos

The present work is focused on the development of a simulation model for an existing cogeneration power plant, which utilizes a solar thermal field with parabolic trough solar collectors coupled to an Organic Rankine Cycle engine. The power plant is modeled in the trnsys v.17 software package and its performance has been validated with real operating conditions. The simulated system (concentrated solar power (CSP) field and ORC engine) is the main part of a hybrid power plant located near “Ziloti” village of the Municipality of Xanthi, in northeastern Greece. The construction of the hybrid power plant was funded by the Strategic Co-Funded Project of the European Territorial Cooperation Program Greece–Bulgaria 2007–2013 with the acronym ENERGEIA. The power plant simulated in this paper includes a 234 kWth solar parabolic trough collector (PTC) field, a 5 m3 thermal energy storage tank, and a 5 kWe ORC engine for the production of thermal and electrical energies. The results of the simulations present small deviation in contrast to the real operating data of the CSP power plant coupled with the ORC engine, therefore the simulation model is considered as reliable.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Davide Ziviani ◽  
Asfaw Beyene ◽  
Mauro Venturini

This paper presents the results of the application of an advanced thermodynamic model developed by the authors for the simulation of Organic Rankine Cycles (ORCs). The model allows ORC simulation both for steady and transient analysis. The expander, selected to be a scroll expander, is modeled in detail by decomposing the behavior of the fluid stream into several steps. The energy source is coupled with the system through a plate heat exchanger (PHE), which is modeled using an iterative sub-heat exchanger modeling approach. The considered ORC system uses solar thermal energy for ultralow grade thermal energy recovery. The simulation model is used to investigate the influence of ORC characteristic parameters related to the working medium, hot reservoir and component efficiencies for the purpose of optimizing the ORC system efficiency and power output. Moreover, dynamic response of the ORC is also evaluated for two scenarios, i.e. (i) supplying electricity for a typical residential user and (ii) being driven by a hot reservoir. Finally, the simulation model is used to evaluate ORC capability to meet electric, thermal and cooling loads of a single residential building, for typical temperatures of the hot water exiting from a solar collector.


Author(s):  
Davide Ziviani ◽  
Asfaw Beyene ◽  
Mauro Venturini

Low-grade heat recovery from solar or geothermal energy may be an eco-friendly resource for electric and thermal energy recovery. The Organic Rankine Cycle (ORC) is one of the main candidates to exploit low-temperature heat sources, otherwise difficult to access using conventional power generation systems. In this paper, an advanced thermodynamic model of an ORC is developed, with the final aim to optimize ORC conversion efficiency, especially for micro-CHP applications. First, a thorough review of issues related to ORC system modeling is presented by analyzing the state-of-the-art experience and advancements. Subsequently, an advanced simulation model is developed, by taking advantage of all the key characteristics of the models presented in the literature. The simulation model is developed in Matlab®/AMESim® environment, which allows system modeling both for steady and transient analysis. The heat source is coupled with the system through a plate heat exchanger, which is modeled using an iterative sub-heat exchanger modeling approach. A scroll expander, modeled in detail by decomposing the behavior of the fluid stream into several steps, is used to extract the useful work. Finally, model predictions for the evaporator and the expander are validated against both numerical and experimental data published in literature. The simulation model of the entire ORC system is also validated against literature data taken on a test bench.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


2017 ◽  
Author(s):  
Weicong Xu ◽  
Li Zhao ◽  
Shuai Deng ◽  
Jianyuan Zhang ◽  
Wen Su

Sign in / Sign up

Export Citation Format

Share Document