Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector

2022 ◽  
Vol 308 ◽  
pp. 118401
Author(s):  
Xiaoli Zhang ◽  
Xueqin Cui ◽  
Bo Li ◽  
Patricia Hidalgo-Gonzalez ◽  
Daniel M Kammen ◽  
...  
Keyword(s):  
Author(s):  
Sofia Simoes ◽  
Wouter Nijs ◽  
Pablo Ruiz ◽  
Alessandra Sgobbi ◽  
Christian Thiel
Keyword(s):  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2738 ◽  
Author(s):  
Jenny Peña Balderrama ◽  
Thomas Alfstad ◽  
Constantinos Taliotis ◽  
Mohammad Hesamzadeh ◽  
Mark Howells

This paper considers hypothetical options for the transformation of the Bolivian power generation system to one that emits less carbon dioxide. Specifically, it evaluates the influence of the weighted average cost of capital (WACC) on marginal abatement cost curves (MACC) when applying carbon taxation to the power sector. The study is illustrated with a bottom-up least-cost optimization model. Projections of key parameters influence the shape of MACCs and the underlying technology configurations. These are reported. Results from our study (and the set of assumptions on which they are based) are country-specific. Nonetheless, the methodology can be replicated to other case studies to provide insights into the role carbon taxes and lowering finance costs might play in reducing emissions.


Author(s):  
Rudolf Rechsteiner

Abstract The German Energiewende (energy transition) started with price guarantees for avoidance activities and later turned to premiums and tenders. Dynamic efficiency was a core concept of this environmental policy. Out of multiple technologies wind and solar power—which were considered too expensive at the time—turned out to be cheaper than the use of oil, coal, gas or nuclear energy for power generation, even without considering externalities. The German minimum price policy opened doors in a competitive way, creating millions of new generators and increasing the number of market participants in the power sector. The fact that these new generators are distributed, non-synchronous and weather-dependent has caused contentious discussions and specific challenges. This paper discusses these aspects in detail and outlines its impacts. It also describes Swiss regulations that successfully launched avoidance technologies or services and asks why exactly Pigou's neoclassical economic approach to the internalization of damage costs (externalities) has rarely worked in policy reality, while sector-specific innovations based on small surcharges have been more successful. Based on the model of feed-in tariffs, a concept for the introduction of low-carbon air traffic is briefly outlined. Graphic Abstract


Author(s):  
David Noble ◽  
David Wu ◽  
Benjamin Emerson ◽  
Scott Sheppard ◽  
Tim Lieuwen ◽  
...  

Abstract A confluence of technology development, policy support, and industry investment trends are accelerating the pace of Hydrogen (H2) technology demonstrations, increasing the likelihood of power sector impacts. In preparation for a largescale power sector shift toward decarbonization for a low-carbon future, several major power equipment manufacturers are developing gas turbines that can operate on a high H2-volume fuel. Many have H2 capable systems now that range from 5 to 100% H2. Units with 100% H2 capabilities are either using a diffusion burner or some version of a wet low emissions (WLE) burner. Most dry low emission/dry low NOx (DLE/DLN) technologies are currently limited to ~60% H2 or less. Therefore, research is currently underway to develop low NOx gas turbine combustion systems with improved Hydrogen capability. This paper provides an overview of the technical challenges of Hydrogen combustion and the probable technologies with which the manufacturers will respond.


2016 ◽  
Vol 114 ◽  
pp. 81-94 ◽  
Author(s):  
Hiroto Shiraki ◽  
Shuichi Ashina ◽  
Yasuko Kameyama ◽  
Seiji Hashimoto ◽  
Tsuyoshi Fujita

Sign in / Sign up

Export Citation Format

Share Document