Nasal skin temperature reveals changes in arousal levels due to time on task: An experimental thermal infrared imaging study

2019 ◽  
Vol 81 ◽  
pp. 102870 ◽  
Author(s):  
Carolina Diaz-Piedra ◽  
Emilo Gomez-Milan ◽  
Leandro L. Di Stasi
2014 ◽  
Vol 5 ◽  
Author(s):  
Stephanos Ioannou ◽  
Paul Morris ◽  
Hayley Mercer ◽  
Marc Baker ◽  
Vittorio Gallese ◽  
...  

Author(s):  
Stephanos Ioannou ◽  
Paul H. Morris ◽  
Marc Baker ◽  
Vasudevi Reddy ◽  
Vittorio Gallese

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241843
Author(s):  
Matthew Charlton ◽  
Sophie A. Stanley ◽  
Zoë Whitman ◽  
Victoria Wenn ◽  
Timothy J. Coats ◽  
...  

Background The measurement of body temperature has become commonplace in the current COVID-19 pandemic. Body temperature can be measured using thermal infrared imaging, a safe, non-contact method that relies on the emissivity of the skin being known to provide accurate readings. Skin pigmentation affects the absorption of visible light and enables us to see variations in skin colour. Pigmentation may also affect the absorption of infrared radiation and thus affect thermal imaging. Human skin has an accepted emissivity of 0.98 but the effect of different skin pigmentation on this value is not known. In this study, we investigated the influence of different skin pigmentation on thermal emissivity in 65 adult volunteers. Methods A reference object of known emissivity (electrical tape) was applied to participant’s skin on the inner upper arm. Tape and arm were imaged simultaneously using a thermal infrared camera. The emissivity was set on the camera to the known value for electrical tape. The emissivity was altered manually until the skin temperature using thermal imaging software was equal to the initial tape temperature. This provided the calculated emissivity value of the skin. Participants were grouped according to skin pigmentation, quantified using the Fitzpatrick skin phototyping scale and reflectance spectrophotometry. Differences in emissivity values between skin pigmentation groups were assessed by one-way ANOVA. Results The mean calculated emissivity for the 65 participants was 0.972 (range 0.96–0.99). No significant differences in emissivity were observed between participants when grouped by skin pigmentation according to the Fitzpatrick scale (p = 0.859) or reflectance spectrophotometry (p = 0.346). Conclusion These data suggest that skin pigmentation does not affect thermal emissivity measurement of skin temperature using thermal infrared imaging. This study will aid further research into the application of thermal infrared imaging as a screening or bedside diagnostic tool in clinical practice.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79440 ◽  
Author(s):  
Stephanos Ioannou ◽  
Sjoerd Ebisch ◽  
Tiziana Aureli ◽  
Daniela Bafunno ◽  
Helene Alexi Ioannides ◽  
...  

2008 ◽  
pp. 347-359 ◽  
Author(s):  
David J. Schneider ◽  
James W. Vallance ◽  
Rick L. Wessels ◽  
Matthew Logan ◽  
Michael S. Ramsey

Sign in / Sign up

Export Citation Format

Share Document