scholarly journals A note on asymptotic behaviors of stochastic population model with Allee effect

2011 ◽  
Vol 35 (9) ◽  
pp. 4611-4619 ◽  
Author(s):  
Qingshan Yang ◽  
Daqing Jiang
Author(s):  
Rong Liu ◽  
Guirong Liu

This paper is concerned with a stochastic population model with Allee effect and jumps. First, we show the global existence of almost surely positive solution to the model. Next, exponential extinction and persistence in mean are discussed. Then, we investigated the global attractivity and stability in distribution. At last, some numerical results are given. The results show that if attack rate $a$ is in the intermediate range or very large, the population will go extinct. Under the premise that attack rate $a$ is less than growth rate $r$, if the noise intensity or jump is relatively large, the population will become extinct; on the contrary, the population will be persistent in mean. The results in this paper generalize and improve the previous related results.


2010 ◽  
Vol 52 (1-2) ◽  
pp. 370-379 ◽  
Author(s):  
Marija Krstić ◽  
Miljana Jovanović

2021 ◽  
pp. 1-18
Author(s):  
J. M. CUSHING ◽  
KATHRYN STEFANKO

We derive and study a Darwinian dynamic model based on a low-dimensional discrete- time population model focused on two features: density-dependent fertility and a trade-off between inherent (density free) fertility and post-reproduction survival. Both features are assumed to be dependent on a phenotypic trait subject to natural selection. The model tracks the dynamics of the population coupled with that of the population mean trait. We study the stability properties of equilibria by means of bifurcation theory. Whether post-reproduction survival at equilibrium is low or high is shown, in this model, to depend significantly on the nature of the trait dependence of the density effects. An Allee effect can also play a significant role.


Sign in / Sign up

Export Citation Format

Share Document