scholarly journals Development of a mechanistic cutting force model for wavy-edge bull-nose helical end-milling of inconel 718 under emulsion cooling strategy

2016 ◽  
Vol 40 (4) ◽  
pp. 2637-2660 ◽  
Author(s):  
A. Chukwujekwu Okafor ◽  
Abdulhakim Ali Sultan
2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


2011 ◽  
Vol 291-294 ◽  
pp. 2965-2969
Author(s):  
Yu Jun Cai ◽  
Hua Shen ◽  
Tie Li Qi

A new cutting force model of ball-end mill with double effect is developed through analysing the machining process by using differential geometry. The cutting force model is needed to be revised for the component force in Z direction because of the offset to the actual results. The cutting force and the ball-end milling force coefficients can be given with numerical method. A feedrate optimization strategy is also proposed based on the developed cutting force model and tested effectively.


2011 ◽  
Vol 188 ◽  
pp. 404-409 ◽  
Author(s):  
Xue Yan ◽  
Hua Tao ◽  
D.H. Zhang ◽  
B.H. Wu

A developed method to predict the cutting forces in end milling of generalized corners is proposed in this paper. The cornering milling process is divided into a series of cutting segments with different cutting states. The mathematical model of the geometric relationship between cutter and the corner profile is established for each segment. Cutting forces is predicted by introducing the classical cutting force model. The computational results of cutting forces are in good agreement with experimental data.


Author(s):  
Alex Elías-Zúñiga ◽  
Jovanny Pacheco-Bolívar ◽  
Francisco Araya ◽  
Alejandro Martínez-López ◽  
Oscar Martínez-Romero ◽  
...  

The aim of this paper is to obtain the stability lobes for milling operations with a nonlinear cutting force model. The work is focused on the generation of stability lobes based on a formulation with Chebyshev polynomials and the semidiscretization method, considering a nonlinear cutting force model. Comparisons were conducted between experimental data at 5% radial immersion with aluminum workpiece and predictions based on Chebyshev and semidiscretization. In all cases, the use of nonlinear cutting force model provides better prediction of process stability conditions.


Author(s):  
Raed Hassan ◽  
Robert B. Jerard ◽  
Barry K. Fussell ◽  
Firat Eren ◽  
Donald M. Esterling

This paper quantifies statistical variations in model predicted machining forces while cutting aluminum, carbon steel, stainless steel and titanium. An accurate estimate of the variability is essential for use in process planning to determine appropriate factors of safety when setting cutting conditions that are both safe and efficient. A linear regression is performed to estimate the coefficients of a tangential cutting force model. Density ellipses are used to define the confidence limits of the coefficients under varying spindle speeds and radial immersions. The locus of coefficients at the 95% confidence level is then used in a mechanistic force model to quantify the variability in the cutting force predictions. Forces calculated by the model were within 20% of the nominal predicted values for cases for aluminum, steel and stainless steel. The results were much worse for titanium because of a smaller sample size. Experimentally measured forces were within the error bounds predicted by the simulation.


1999 ◽  
Author(s):  
Hsi-Yung (Steve) Feng ◽  
Ning Su

Abstract The prediction and optimization of cutting forces in the finishing machining of 3D plane surfaces using ball-end milling are presented in this paper. The cutting force model is developed based on the mechanistic modeling approach. This improved model is able to accurately predict the cutting forces for non-horizontal and cross-feed cutter movements typical in 3D finishing ball-end milling. Optimization of the cutting forces is used to determine both the tool path and the maximum feed rate in 3D plane surface finishing machining. The objective is to achieve highest machining efficiency and to ensure product quality. Experimental results have shown that the cutting force model gives excellent predictions of cutting forces in 3D finishing ball-end milling. The feasibility of the integrated process planning method has been demonstrated through the establishment of optimized process plans for the finishing machining of 3D plane surfaces.


Author(s):  
Bryan Javorek ◽  
Barry K. Fussell ◽  
Robert B. Jerard

Changes in cutting forces during a milling operation can be associated with tool wear and breakage. Accurate monitoring of these cutting forces is an important step towards the automation of the machining process. However, direct force sensors, such as dynamometers, are not practical for industry application due to high costs, unwanted compliance, and workspace limitations. This paper describes a method in which power sensors on the feed and spindle motors are used to generate coefficients for a cutting force model. The resulting model accurately predicts the X and Y cutting forces observed in several simple end-milling tests, and should be capable of estimating both the peak and average force for a given cut geometry. In this work, a dynamometer is used to calibrate the feed drive power sensor and to measure experimental cutting forces for verification of the cutting force model. Measurement of the average x-axis cutting forces is currently presented as an off-line procedure performed on a sacrificial block of material. The potential development of a continuous, real-time force monitoring system is discussed.


Sign in / Sign up

Export Citation Format

Share Document