scholarly journals A practical method to monitor tool wear in end milling using a changing cutting force model that requires no additional sensors

2021 ◽  
Vol 15 (6) ◽  
pp. JAMDSM0077-JAMDSM0077
Author(s):  
Kazuki KANEKO ◽  
Isamu NISHIDA ◽  
Ryuta SATO ◽  
Keiichi SHIRASE
2017 ◽  
Vol 11 (6) ◽  
pp. 958-963
Author(s):  
Koji Teramoto ◽  
◽  
Takahiro Kunishima ◽  
Hiroki Matsumoto

Elastomer end-milling is attracting attention for its role in the small-lot production of elastomeric parts. In order to apply end-milling to the production of elastomeric parts, it is important that the workpiece be held stably to avoid deformation. To evaluate the stability of workholding, it is necessary to predict cutting forces in elastomer end-milling. Cutting force prediction for metal workpiece end-milling has been investigated for many years, and many process models for end-milling have been proposed. However, the applicability of these models to elastomer end-milling has not been discussed. In this paper, the characteristics of the cutting force in elastomer end-milling are evaluated experimentally. A standard cutting force model and its parameter identification method are introduced. By using this cutting force model, measured cutting forces are compared against the calculated results. The comparison makes it clear that the standard cutting force model for metal end-milling can be applied to down milling for a rough evaluation.


2011 ◽  
Vol 291-294 ◽  
pp. 2965-2969
Author(s):  
Yu Jun Cai ◽  
Hua Shen ◽  
Tie Li Qi

A new cutting force model of ball-end mill with double effect is developed through analysing the machining process by using differential geometry. The cutting force model is needed to be revised for the component force in Z direction because of the offset to the actual results. The cutting force and the ball-end milling force coefficients can be given with numerical method. A feedrate optimization strategy is also proposed based on the developed cutting force model and tested effectively.


Author(s):  
Kuan-Ming Li ◽  
Steven Y. Liang

The objective of this paper is to present a methodology to analytically model the tool flank wear rate in near-dry turning. The resulting models can serve as a basis to minimize time-consuming machining tests in predicting tool life. Analytical models, including cutting force model, cutting temperature model, and tool wear model, are presented. The cutting force model was established based on Oxley’s model with modifications for lubricating and cooling effect due to the air-oil mixture in near-dry machining. The cutting temperature was obtained by considering a moving or stationary heat source in the tool. The tool wear model contained abrasive mechanism, adhesion mechanism, and diffusion mechanism. The important factors related to this model were contact stresses and temperatures that were obtained from the cutting force model and the cutting temperature model. To develop these models, a set of cutting experiments using carbide tools on AISI 1045 steels were performed to calibrate the coefficients in the models and to verify the proposed flank wear mechanisms. The comparisons between the model-predictive flank wear and experimental results showed that the flank wear in near dry machining can be estimated well by the proposed models. It was also found that the cutting velocity was a dominant factor among the cutting conditions.


2011 ◽  
Vol 188 ◽  
pp. 404-409 ◽  
Author(s):  
Xue Yan ◽  
Hua Tao ◽  
D.H. Zhang ◽  
B.H. Wu

A developed method to predict the cutting forces in end milling of generalized corners is proposed in this paper. The cornering milling process is divided into a series of cutting segments with different cutting states. The mathematical model of the geometric relationship between cutter and the corner profile is established for each segment. Cutting forces is predicted by introducing the classical cutting force model. The computational results of cutting forces are in good agreement with experimental data.


Author(s):  
Alex Elías-Zúñiga ◽  
Jovanny Pacheco-Bolívar ◽  
Francisco Araya ◽  
Alejandro Martínez-López ◽  
Oscar Martínez-Romero ◽  
...  

The aim of this paper is to obtain the stability lobes for milling operations with a nonlinear cutting force model. The work is focused on the generation of stability lobes based on a formulation with Chebyshev polynomials and the semidiscretization method, considering a nonlinear cutting force model. Comparisons were conducted between experimental data at 5% radial immersion with aluminum workpiece and predictions based on Chebyshev and semidiscretization. In all cases, the use of nonlinear cutting force model provides better prediction of process stability conditions.


Author(s):  
Raed Hassan ◽  
Robert B. Jerard ◽  
Barry K. Fussell ◽  
Firat Eren ◽  
Donald M. Esterling

This paper quantifies statistical variations in model predicted machining forces while cutting aluminum, carbon steel, stainless steel and titanium. An accurate estimate of the variability is essential for use in process planning to determine appropriate factors of safety when setting cutting conditions that are both safe and efficient. A linear regression is performed to estimate the coefficients of a tangential cutting force model. Density ellipses are used to define the confidence limits of the coefficients under varying spindle speeds and radial immersions. The locus of coefficients at the 95% confidence level is then used in a mechanistic force model to quantify the variability in the cutting force predictions. Forces calculated by the model were within 20% of the nominal predicted values for cases for aluminum, steel and stainless steel. The results were much worse for titanium because of a smaller sample size. Experimentally measured forces were within the error bounds predicted by the simulation.


1999 ◽  
Author(s):  
Hsi-Yung (Steve) Feng ◽  
Ning Su

Abstract The prediction and optimization of cutting forces in the finishing machining of 3D plane surfaces using ball-end milling are presented in this paper. The cutting force model is developed based on the mechanistic modeling approach. This improved model is able to accurately predict the cutting forces for non-horizontal and cross-feed cutter movements typical in 3D finishing ball-end milling. Optimization of the cutting forces is used to determine both the tool path and the maximum feed rate in 3D plane surface finishing machining. The objective is to achieve highest machining efficiency and to ensure product quality. Experimental results have shown that the cutting force model gives excellent predictions of cutting forces in 3D finishing ball-end milling. The feasibility of the integrated process planning method has been demonstrated through the establishment of optimized process plans for the finishing machining of 3D plane surfaces.


Sign in / Sign up

Export Citation Format

Share Document