scholarly journals Confidence sets for the two-parameter Rayleigh distribution under progressive censoring

2017 ◽  
Vol 47 ◽  
pp. 656-667 ◽  
Author(s):  
Akbar Asgharzadeh ◽  
Arturo J. Fernández ◽  
Mousa Abdi
Author(s):  
Farzana NOOR ◽  
Ahthasham SAJİD ◽  
Maha GHAZAL ◽  
İmranullah KHAN ◽  
Mehwish ZAMAN ◽  
...  

2019 ◽  
Vol 48 (3) ◽  
pp. 76-86
Author(s):  
Arun Kaushik

In this paper, we have considered the problem of optimal inspection times for the progressive interval type-I censoring scheme where uncertainty in the process is governed by the two-parameter Rayleigh distribution. Here, we also introduced some optimality criterion and determined the optimum inspection times, accordingly. The effect of the number of inspections and choice of optimally spaced inspection times based on the asymptotic relative efficiencies of the maximum likelihood estimates of the parameters are also investigated. Further, we have discussed the optimal progressive type-I interval censoring plan when the inspection times and the expected proportions of total failures in the experiment are under control.


Author(s):  
G.G. Hamedani ◽  
Mahrokh Najaf ◽  
Amin Roshani ◽  
Nadeem Shafique Butt

In this paper, certain characterizations of twenty newly proposed discrete distributions: the discrete gen- eralized Lindley distribution of El-Morshedy et al.(2021), the discrete Gumbel distribution of Chakraborty et al.(2020), the skewed geometric distribution of Ong et al.(2020), the discrete Poisson X gamma distri- bution of Para et al.(2020), the discrete Cos-Poisson distribution of Bakouch et al.(2021), the size biased Poisson Ailamujia distribution of Dar and Para(2021), the generalized Hermite-Genocchi distribution of El-Desouky et al.(2021), the Poisson quasi-xgamma distribution of Altun et al.(2021a), the exponentiated discrete inverse Rayleigh distribution of Mashhadzadeh and MirMostafaee(2020), the Mlynar distribution of Fr¨uhwirth et al.(2021), the flexible one-parameter discrete distribution of Eliwa and El-Morshedy(2021), the two-parameter discrete Perks distribution of Tyagi et al.(2020), the discrete Weibull G family distribution of Ibrahim et al.(2021), the discrete Marshall–Olkin Lomax distribution of Ibrahim and Almetwally(2021), the two-parameter exponentiated discrete Lindley distribution of El-Morshedy et al.(2019), the natural discrete one-parameter polynomial exponential distribution of Mukherjee et al.(2020), the zero-truncated discrete Akash distribution of Sium and Shanker(2020), the two-parameter quasi Poisson-Aradhana distribution of Shanker and Shukla(2020), the zero-truncated Poisson-Ishita distribution of Shukla et al.(2020) and the Poisson-Shukla distribution of Shukla and Shanker(2020) are presented to complete, in some way, the au- thors’ works.


Author(s):  
Ruochen Wu

Synthetic Aperture Radar (SAR) is an active type of microwave remote sensing. Using the microwave imaging system, remote sensing monitoring of the land and global ocean can be done in any weather conditions around the clock. Detection of SAR image targets is one of the main needs of radar image interpretation applications. In this paper, an improved two-parameter CFAR algorithm based on Rayleigh distribution and morphological processing is proposed to perform ship detection and recognition in high resolution SAR images. Through simulation experiments, comprehensive study of the two algorithms for high resolution SAR image target detection is achieved. Finally, the results of ship detection experiments are compared and analyzed, and the effects of detection are evaluated according to the Rayleigh distribution model and algorithms.


Sign in / Sign up

Export Citation Format

Share Document