scholarly journals Two-Parameter CFAR Ship Detection Algorithm Based on Rayleigh Distribution in SAR Images

Author(s):  
Ruochen Wu

Synthetic Aperture Radar (SAR) is an active type of microwave remote sensing. Using the microwave imaging system, remote sensing monitoring of the land and global ocean can be done in any weather conditions around the clock. Detection of SAR image targets is one of the main needs of radar image interpretation applications. In this paper, an improved two-parameter CFAR algorithm based on Rayleigh distribution and morphological processing is proposed to perform ship detection and recognition in high resolution SAR images. Through simulation experiments, comprehensive study of the two algorithms for high resolution SAR image target detection is achieved. Finally, the results of ship detection experiments are compared and analyzed, and the effects of detection are evaluated according to the Rayleigh distribution model and algorithms.

2021 ◽  
Vol 13 (2) ◽  
pp. 328
Author(s):  
Wenkai Liang ◽  
Yan Wu ◽  
Ming Li ◽  
Yice Cao ◽  
Xin Hu

The classification of high-resolution (HR) synthetic aperture radar (SAR) images is of great importance for SAR scene interpretation and application. However, the presence of intricate spatial structural patterns and complex statistical nature makes SAR image classification a challenging task, especially in the case of limited labeled SAR data. This paper proposes a novel HR SAR image classification method, using a multi-scale deep feature fusion network and covariance pooling manifold network (MFFN-CPMN). MFFN-CPMN combines the advantages of local spatial features and global statistical properties and considers the multi-feature information fusion of SAR images in representation learning. First, we propose a Gabor-filtering-based multi-scale feature fusion network (MFFN) to capture the spatial pattern and get the discriminative features of SAR images. The MFFN belongs to a deep convolutional neural network (CNN). To make full use of a large amount of unlabeled data, the weights of each layer of MFFN are optimized by unsupervised denoising dual-sparse encoder. Moreover, the feature fusion strategy in MFFN can effectively exploit the complementary information between different levels and different scales. Second, we utilize a covariance pooling manifold network to extract further the global second-order statistics of SAR images over the fusional feature maps. Finally, the obtained covariance descriptor is more distinct for various land covers. Experimental results on four HR SAR images demonstrate the effectiveness of the proposed method and achieve promising results over other related algorithms.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


2018 ◽  
Author(s):  
Benjamin R. Loveday ◽  
Timothy Smyth

Abstract. A consistently calibrated 40-year length dataset of visible channel remote sensing reflectance has been derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor global time-series. The dataset uses as its source the Pathfinder Atmospheres – Extended (PATMOS-x) v5.3 Climate Data Record (CDR) for top-of-atmosphere (TOA) visible channel reflectances. This paper describes the theoretical basis for the atmospheric correction procedure and its subsequent implementation, including the necessary ancillary data files used and quality flags applied, in order to determine remote sensing reflectance. The resulting dataset is produced at daily, and archived at monthly, resolution, on a 0.1° × 0.1° grid at https://doi.pangaea.de/10.1594/PANGAEA.892175. The primary aim of deriving this dataset is to highlight regions of the global ocean affected by highly reflective blooms of the coccolithophorid Emiliania Huxleyi over the past 40 years.


2020 ◽  
Author(s):  
Tao Li ◽  
Yangmao Wen ◽  
Lulu Chen ◽  
Jinge Wang

<p>Three Gorge area landslide hazards developed very fast after the Dam started to impound the water since 2007. There were lots of research literatures concentrated on the Badong Huangtupo Landslide area for the whole city center had to change its position in 2009. Several literatures used Envisat SAR images time series to monitoring the surface deformation from 2008~2010. The results showed good consistent with the water level changes and precipitation.  The high resolution TerraSAR Spotlight images had been used to monitoring the Shuping landslide and Fanjiaping landslide area in Zigui country from 2009~2012,the InSAR results showed good details of the landslide boundary and deformation rate with DInSAR technology.</p><p>This paper studies several landslide area in the Three Gorge by InSAR technology in the past few years, such as Huangtupo, Huanglashi , Daping and  Baiheping landslide area , etc. al . The high resolution SAR images covered Badong and Wushan area have been collected, including the Sentinel-1, TerraSAR, RadarSAT-2, ALOS-2 SAR images. The high resolution topography in those landslide area have been collected both by UAV lidar and high resolution topography map.</p><p>The Huangtupo landslide area changed a lot in the past 3 years with the buildings ruins cleared and red soil covered by the local government. The time series results by Sentinel data in this area shows the big changes but could not derive reasonable deformation results.</p><p>Three Gorges Research Center for Geo-hazards (TGRC) of China University of Geosciences(CUG) built the Badong field test site in Huangtupo landslide area. This test site is composed with a tunnel group and a series of monitoring system including the inside sensors, surface deformation monitoring sensors and so on. In this paper, we mounted several new designed dihedral corner reflectors on the Huangtupo landslide area for high precision deformation monitoring by InSAR. Both the  ascending and the  descending orbit data of RadarSAT-2 high resolution SAR image  and TerraSAR Spotlight images have been collected in this field.</p><p>The preliminary results from those new acquiring SAR data series show that the traditional landslide area such as Huanglashi , Daping, Baiheping are all moving slowly with good coherence in SAR image series.  The poor vegetation coverage in those landslide area helped to get the credible  InSAR results. The high resolution DEM is the critical elements for the DInSAR techniques in those landslide area. The steep  topography in those landslide area distorted the SAR images correspondingly.</p><p>Our results shows that it is possible to use ascending and descending high resolution SAR images to monitor the landslide area with mm level precision, while the vegetation is not so dense. High resolution SAR interferometry helped a lot for the landslide boundary detection and detailed analysis. The lower resolution SAR images such as Sentinel-1 still could provide some deformation results in landslide area, but it need more auxiliary data to interpret the results.</p>


Sign in / Sign up

Export Citation Format

Share Document