Numerical study on the wave-induced roll motion of a damaged ship in head seas

2021 ◽  
Vol 114 ◽  
pp. 102805
Author(s):  
Zhiliang Gao ◽  
Ximin Tian
Author(s):  
Lu-Ning Cui ◽  
Yi Zheng ◽  
Yinggang Li ◽  
Ling Zhu ◽  
Mingsheng Chen

Abstract Ships sailing in the sea may encounter collision, grounding or projectile impacting accidents, which may cause hull damage and subsequent compartment flooding. Due to the effect of the flooding water induced moment and the restoring moment, the damaged ship may have inclination and rolling motion. When the inclination or the rolling motion is too large, it may affect the safety and survivability of ship in navigation and cause severe casualties and property losses. In order to increase the navigation safety and survivability of the damaged ship, a numerical model is established based on the potential flow theory to investigate the seakeeping performance of the damaged ship in two scenarios, i.e., the case before ship damaged, and the case when the damaged ship reaching a relatively stable floating state. The heave, pitch and roll motion responses and corresponding wave-induced loads acting on the ship are analyzed in regular waves. In addition, the effects of the navigation speed and the wave direction on the seakeeping performance are also investigated.


2021 ◽  
Vol 930 ◽  
Author(s):  
I.A. Milne ◽  
O. Kimmoun ◽  
J.M.R. Graham ◽  
B. Molin

The wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities.


2018 ◽  
Vol 1 (4) ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Mohammad Beigi Kasvaei ◽  
◽  
Mohammad Hossein Kazeminezhad ◽  
Abbas Yeganeh-Bakhtiary ◽  
◽  
...  

2018 ◽  
Vol 157 ◽  
pp. 364-375 ◽  
Author(s):  
Chencong Liao ◽  
Dagui Tong ◽  
Dong-Sheng Jeng ◽  
Hongyi Zhao

2021 ◽  
Vol 240 ◽  
pp. 109869
Author(s):  
Bei Chu ◽  
Yiren Chen ◽  
Yao Zhang ◽  
Guangming Zhang ◽  
Xu Xiang ◽  
...  

2019 ◽  
Vol 1 (11) ◽  
Author(s):  
Richard Asumadu ◽  
Jisheng Zhang ◽  
H. Y. Zhao ◽  
Hubert Osei-Wusuansa ◽  
Alex Baffour Akoto

2013 ◽  
Vol 63 (11-12) ◽  
pp. 1151-1174 ◽  
Author(s):  
Chai Heng Lim ◽  
Karsten Lettmann ◽  
Jörg-Olaf Wolff

Author(s):  
J-H Kim ◽  
Y-H Kim

The present study considers the motion control of a cruise ship by using active stabilizing fins. One or two pairs of stabilizing fins are equipped to reduce the roll and/or pitch motions of the cruise ship. Each fin is controlled by algorithms based on proportional–integral–derivative (PID) and linear quadratic Gaussian (LQG) control. Numerical analysis of the wave-induced motion of a cruise ship with stabilizing fins is carried out by using the time-domain ship motion program which has been developed through this study. The resultant motion response as the performance of each controller is compared between different control algorithms. Based on the present simulation results, the stabilizing fin can be considered a good instrument to reduce pitch motion as well as roll motion of the present cruise ship model. The present results show that the PID control algorithm, a simple but practical algorithm, can be an appropriate method to reduce the roll motion in a moderate sea state, while the LQG control algorithm shows good performance in reducing not only the roll motion but also the coupled roll and pitch motions simultaneously in all of environmental conditions considered.


2018 ◽  
Vol 85 ◽  
pp. 921-925
Author(s):  
Titi Sui ◽  
Chi Zhang ◽  
Jinhai Zheng ◽  
Yakun Guo ◽  
Mingxiao Xie

Sign in / Sign up

Export Citation Format

Share Document