A dataset of steam condensation over a double enhanced tube bundle under vacuum

2004 ◽  
Vol 24 (8-9) ◽  
pp. 1381-1393 ◽  
Author(s):  
T.H. Ooi ◽  
D.R. Webb ◽  
P.J. Heggs
2021 ◽  
Vol 136 ◽  
pp. 103722
Author(s):  
Gonglin Li ◽  
Boyang Cao ◽  
Shuhang Zhou ◽  
Haozhi Bian ◽  
Ming Ding

Author(s):  
Jinhoon Kang ◽  
Jeongmin Moon ◽  
Youngchang Ko ◽  
Sang-Gyu Lim ◽  
Byongjo Yun

Author(s):  
A. V. Morozov ◽  
O. V. Remizov ◽  
A. A. Tsyganok

The experimental investigations of non-condensable gases effect on the steam condensation inside multirow horizontal tube bundle of heat exchanger under heat transfer to boiling water were carried out at the large-scale test facility in the Institute for Physics and Power Engineering (IPPE). The experiments were carried out for natural circulation conditions in primary and secondary circuits of the facility at primary circuit steam pressure of Ps1 = 0.34 MPa. The experimental heat exchanger’s tube bundle consists of 248 horizontal coiled tubes arranged in 62 rows. Each row consists of 4 stainless steel tubes of 16 mm in outer diameter, 1.5 mm in wall thickness and of 10.2 m in length. The experimental heat exchanger was equipped with more than 100 thermocouples enabling the temperatures of primary and secondary facility circuits to be controlled in both tube bundle and in the inter-tubular space. The non-condensable gases with different density — nitrogen and helium were used in the experiments. The volumetric content of gases in tube bundle amounted to ε = 0.49. The empirical correlation for the prediction of the relative heat transfer coefficient k/k0 = f (ε) for steam condensation in steam-gas mixture was obtained.


Author(s):  
Zhixian Ma ◽  
Jili Zhang ◽  
Dexing Sun

Inundation effect, decrease of condensation heat transfer coefficient (CHTC) induced by both falling condensate from the neighboring tubes above and condensing condensate form the vapor, significantly affects the CHTC of tube bundles composed of smooth and enhanced tubes. This paper experimentally studied the inundation effect of smooth tube and three kinds of enhanced tubes (3D-A, 3D-B and 2D-A), put forward a scheme to eliminate the inundation effect caused by falling condensate and check it by experimental investigation. HFC134a and HFC245fa (substitutes of CFC12 and CFC11, respectively) were condensed in the experiment. Nominal diameter and active length of each test tube is 19.05mm and 500mm, respectively. Diversion ducts were fixed into the test tube bundle to eliminate tube row effect (part of the inundation effect caused by the falling condensate). Drainage strip was equipped on the test tubes to abate the inundation effect induced by condensed condensate. The (These) experimental results show: (1) Inundation effect of HFC 134a and HFC245fa on smooth tube bundle is not as severe as that predicted by Kern’s model. (2) 3D-B enhanced tube is dramatically affected by the inundation effect caused by falling condensate; (3) The equipped diversion ducts can eliminate tube row effect and improve the CHTC of tube bundles composed of smooth and 3D-B tubes. (4) The equipped drainage strip can further enhance the CHTC of 3D-A and 2D-A tubes in the tube bundle.


Sign in / Sign up

Export Citation Format

Share Document