Performance analysis of short helical borehole heat exchangers via integrated modelling of a borefield and a heat pump: A case study

2013 ◽  
Vol 61 (2) ◽  
pp. 36-47 ◽  
Author(s):  
Angelo Zarrella ◽  
Antonio Capozza ◽  
Michele De Carli
2020 ◽  
Vol 154 ◽  
pp. 04003
Author(s):  
Elżbieta Hałaj

Heat pumps become more and more popular heat source. They can be an alternative choice for obsolete coal fired boilers which are emissive and not ecological. During heat pump installation designing process, especially for heat pumps with higher heating capacity (for example those suppling larger buildings), a simulation of heat balance of ground heat source must be provided. A 3D heat transport model and groundwater flow in the geothermal heat source for heat pump (GSHP) installation was developed in FEFLOW according to Finite Element Modelling Method. The model consists of 25 borehole heat exchangers, arranged with spacing recommended by heat pump branch guidelines. The model consists of both a homogeneous, non-layered domain and a layered domain, which reflected differences in thermal properties of the ground and hydrogeological factors. The initial temperature distribution in the ground was simulating according to conditions typical for Europe in steady state heat flow. Optimal mesh refinement for nodes around borehole heat exchangers were calculated according to Nillert method. The aim of this work is to present influence of geological, hydrogeological factors and borehole arrangement in the energy balance and long term sustainability of the ground source. The thermal changes in the subsurface have been determined for a long term operation (30 years of operation period). Some thermal energy storage applications have also been considered.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 754 ◽  
Author(s):  
Jiewen Deng ◽  
Qingpeng Wei ◽  
Shi He ◽  
Mei Liang ◽  
Hui Zhang

Deep borehole heat exchangers (DBHEs) extract heat from the medium-depth geothermal energy with the depth of 2–3 km and provide high-temperature heat source for the medium-depth geothermal heat pump systems (MD-GHPs). This paper focuses on the heat transfer performance of DBHEs, where field tests and simulation are conducted to analyze the heat transfer process and the influence factors. Results identify that the heat transfer performance is greatly influenced by geothermal properties of the ground, thermal properties and depth of DBHEs and operation parameters, which could be classified into external factors, internal factors and synergic adjustment. In addition, the long-term operation effects are analyzed with the simulation, results show that with inlet water temperature setting at 20 °C and flow rate setting at 6.0 kg/s, the average outlet water temperature only drops 0.99 °C and the average heat extraction drops 9.5% after 20-years operation. Therefore, it demonstrates that the medium-depth geothermal energy can serve as the high-temperature heat source for heat pump systems stably and reliably. The results from this study can be potentially used to guide the system design and optimization of DBHEs.


2010 ◽  
Vol 30 (8-9) ◽  
pp. 1029-1033 ◽  
Author(s):  
Luai M. Al-Hadhrami ◽  
Aftab Ahmad ◽  
Abdullah Al-Qahtani

Sign in / Sign up

Export Citation Format

Share Document