Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

2013 ◽  
Vol 61 (2) ◽  
pp. 364-371 ◽  
Author(s):  
Bernardo Peris ◽  
Joaquín Navarro-Esbrí ◽  
Francisco Molés
Author(s):  
Philipp Skarke ◽  
Shawn Midlam-Mohler ◽  
Marcello Canova

This paper presents a feasibility analysis on the application of Organic Rankine Cycles as a Waste Heat Recovery system for automotive internal combustion engines. The analysis is conducted considering the Ohio State University EcoCAR, a student prototype plug-in hybrid electric vehicle, as a case study for preliminary fuel economy evaluation. Starting from a energy-based powertrain simulation model validated on experimental data from the prototype vehicle, a first and second-law analysis was conducted to identify the potential for engine waste heat recovery, considering a variety of driving cycles and assuming the vehicle operating in charge-sustaining (HEV) mode. Then, a quasi-static thermodynamic model of an Organic Rankine Cycle (ORC) was designed, calibrated from data available in literature and optimized to fit the prototype vehicle. Simulations were then carried out to evaluate the amount of energy recovered by the ORC system, considering both urban and highway driving conditions. The results of the simulations show that a simple ORC system is able to recover up to 10% of the engine waste heat on highway driving conditions, corresponding to a potential 7% improvement in fuel consumption, with low penalization of the added weight to the vehicle electric range.


2013 ◽  
Vol 17 (2) ◽  
pp. 611-624 ◽  
Author(s):  
Mojtaba Tahani ◽  
Saeed Javan ◽  
Mojtaba Biglari

There are a substantial amount of waste heat through exhaust gas and coolant of an Internal Combustion Engine. Organic Rankine cycle is one of the opportunities in Internal Combustion Engines waste heat recovery. In this study, two different configurations of Organic Rankine cycle with the capability of simultaneous waste heat recovery from exhaust gas and coolant of a 12L diesel engine were introduced: Preheat configuration and Two-stage. First, a parametric optimization process was performed for both configurations considering R-134a, R-123, and R-245fa as the cycle working fluids. The main objective in optimization process was maximization of the power generation and cycle thermal efficiency. Expander inlet pressure and preheating temperature were selected as design parameters. Finally, parameters like hybrid generated power and reduction of fuel consumption were studied for both configurations in different engine speeds and full engine load. It was observed that using R-123 as the working fluid, the best performance in both configurations was obtained and as a result the 11.73% and 13.56% reduction in fuel consumption for both preheat and Two-stage configurations were found respectively.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


2019 ◽  
Vol 6 ◽  
pp. 88-109
Author(s):  
Jaiden Op de Veigh ◽  
Nick Glynatsis ◽  
Pasang Gurung ◽  
Chengmin Wang

In motor vehicles, an average of 60-70% of the overall fuel energy is dissipated primarily through the heated exhaust gases and engine coolant, which accounts for 90% of an engine’s thermal output. The fuel efficiency and environment impact of vehicles can therefore be improved by implementation of systems designed to recover this wasted energy. This meta- study explores the current methods for waste heat recovery (WHR) currently in production and research phases. A comparison is also made between the thermodynamic viability of each proposed system, from which future strategies to maximise the efficiency of WHR systems can be obtained. These include the use of the organic Rankine cycle (ORC), thermoelectric generators (TEG), and regenerative braking. The purpose of this paper is to analyse the current state of research for waste heat recovery in vehicles and therefore provide a basis for further research and investigation. The results indicate a promising future for further study of ORCs in the field of WHR for internal combustion engines (ICE) in vehicles. This is due to the various design opportunities that ORCs offer, including multiple loop configurations, different working fluids and integration of thermal energy storage devices. Current research for TEGs indicate a high cost to efficiency ratio for the materials required for production, meaning that TEGs are not as viable of a solution for WHR in vehicles relative to ORCs. This paper concludes that a fuel savings of 8-19% can be achieved through the integration of multiple energy recovery systems. Keywords: Waste Heat Recovery; Vehicles; Thermodynamics; Organic Rankine Cycle; Thermoelectric Generators; Regenerative Braking; Exergy


Sign in / Sign up

Export Citation Format

Share Document