New low temperature industrial waste heat district heating system based on natural gas fired boilers with absorption heat exchangers

2017 ◽  
Vol 125 ◽  
pp. 1437-1445 ◽  
Author(s):  
Fangtian Sun ◽  
Lijiao Cheng ◽  
Lin Fu ◽  
Junwei Gao
2021 ◽  
Vol 260 ◽  
pp. 01002
Author(s):  
Fangtian Sun ◽  
Baoru Hao ◽  
Xu Chen

Performance of the new enhanced ejector heat exchanger is the key to improving performance of the district heating system based on industrial waste heat, and it is significantly affected by thermo-physical property of refrigerant. In this paper, characteristics of the new enhanced ejector heat exchanger are considered, and a new principle for screening refrigerant is proposed. Eleven kinds of refrigerants are firstly selected as candidates, and then they are evaluated from the perspective of property and thermodynamic performance of the new enhanced ejector heat exchanger. The results show that refrigerant property has a greater influence on thermodynamic performance of the new enhanced ejector heat exchanger. Under the condition of low temperature space heating, R152a and R1234yf are favorable choices for the new enhanced ejector heat exchanger. While under conditions of other temperature space heating, R245fa and R600 are better choices for the new enhanced ejector heat exchanger.


Energy Policy ◽  
2013 ◽  
Vol 62 ◽  
pp. 236-246 ◽  
Author(s):  
Hao Fang ◽  
Jianjun Xia ◽  
Kan Zhu ◽  
Yingbo Su ◽  
Yi Jiang

2018 ◽  
Vol 10 (4) ◽  
pp. 116 ◽  
Author(s):  
John Vourdoubas

The possibility of using the rejected heat from lignite-fired power plants for heating greenhouses in northern Greece has been examined. Although currently industrial waste heat is used for district heating in a few towns in Greece, its use in agriculture has not been reported so far. Due to many environmental and economic benefits symbiosis of industrial and agricultural activities is promoted in many countries. Greenhouses in northern Greece utilize mainly natural gas as heating fuel. However heat recovery from the existing power plants and its use in greenhouses could increase their energy efficiency and reduce the thermal pollution. It will also decrease the use of fossil fuels in greenhouses and the resulting carbon emissions as well. Their heating requirements have been estimated at 170 W/m2 and the required hot water temperatures are 50-60 oC below the required water temperature in district heating systems, at 120 oC. Currently the price of heat sold in the district heating system in the town of Kozani is 0.0435 €/KWh, which is very attractive for heating greenhouses compared with other existing methods or fuels. It has been estimated that the heat recovery from the power plants at 70 MWth could cover the heating needs of 41.2 ha of modern agricultural greenhouses in northern Greece. Recycling of industrial waste heat in greenhouses in northern Greece, apart from the resulting environmental benefits, will offer a competitive advantage, increasing the profitability of those enterprises.


2019 ◽  
Vol 100 ◽  
pp. 00009
Author(s):  
Bartłomiej Ciapała ◽  
Mirosław Janowski

Ultra-low temperature district heating systems facilitate use of waste and renewable heat sources. The article presents a possible scheme of operation and optimisation of small ultra-low temperature district heating system consisting of waste heat source, a number of heated individual dwellings and borehole thermal energy storage plant. Optimisation performed for typical meteorological year for Kraków indicate significant potential of decreasing energy amount discharged to the environment and total length of borehole heat exchangers, compared to individual heat/cold production from low-temperature geothermal resources. Meanwhile, satisfied is a set of constrains providing borehole thermal energy storage sustainability and fulfilling entire heating and cooling demands.


Energy ◽  
2017 ◽  
Vol 138 ◽  
pp. 405-418 ◽  
Author(s):  
Fangtian Sun ◽  
Jinzi Zhao ◽  
Lin Fu ◽  
Jian Sun ◽  
Shigang Zhang

2021 ◽  
Author(s):  
Conall Mahon ◽  
Maneesh Kumar Mediboyina ◽  
Donna Gartland ◽  
Fionnuala Murphy

Abstract This paper presents a life cycle assessment (LCA) of heat supply scenarios for the replacement of fossil-based energy systems through a case study focusing on an existing gas-fired boiler supplying heat for buildings located in Tallaght, Ireland. The three replacement systems considered are a waste heat fed heat pump district heating system (WHP-DH), a biomass CHP plant district heating system (BCHP-DH), and an individual gas boiler system (GB). The study found that both DH systems have lower environmental impact than the GB, with the BCHP-DH being superior to WHP-DH. However, using 2030 electricity data showed almost similar overall impacts for both the DH systems. Human toxicity potential (HTP) was highest among all impact categories studied and was due to the large additional infrastructure requirement for all three systems. Whereas the other impacts; Global warming (GWP), Fossil fuel depletion (FFD) and Eutrophication (EP), were due to involving usage of natural gas and electricity in use phase. The BCHP-DH showed reduced greenhouse gas (GHG) emissions by 45% and FFD by 73% compared to the GB system. Using 2030 electricity data, the WHP-DH decreased GHG emissions by 42% and FFD by 47%. Further, replacing biomethane with the natural gas in the DH systems decreased GWP by at least 11.4%. The present study concludes that the environmental benefit of a DH system is largely dependent on the carbon intensity of the electricity it uses, thus recommending the DH systems for large scale retrofitting schemes in Ireland to reach Europe’s 2030 GHG reduction targets.


Sign in / Sign up

Export Citation Format

Share Document