scholarly journals Low-temperature waste heat enabling abandoning coal in Espoo district heating system

Energy ◽  
2021 ◽  
pp. 120916
Author(s):  
Pauli Hiltunen ◽  
Sanna Syri
2019 ◽  
Vol 100 ◽  
pp. 00009
Author(s):  
Bartłomiej Ciapała ◽  
Mirosław Janowski

Ultra-low temperature district heating systems facilitate use of waste and renewable heat sources. The article presents a possible scheme of operation and optimisation of small ultra-low temperature district heating system consisting of waste heat source, a number of heated individual dwellings and borehole thermal energy storage plant. Optimisation performed for typical meteorological year for Kraków indicate significant potential of decreasing energy amount discharged to the environment and total length of borehole heat exchangers, compared to individual heat/cold production from low-temperature geothermal resources. Meanwhile, satisfied is a set of constrains providing borehole thermal energy storage sustainability and fulfilling entire heating and cooling demands.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2007 ◽  
Vol 27 (7) ◽  
pp. 1158-1164 ◽  
Author(s):  
Augustine N. Ajah ◽  
Anish C. Patil ◽  
Paulien M. Herder ◽  
Johan Grievink

Sign in / Sign up

Export Citation Format

Share Document