Comparative analysis on thermal performance of different wall insulation forms under the air-conditioning intermittent operation in summer

2018 ◽  
Vol 130 ◽  
pp. 429-438 ◽  
Author(s):  
Xi Meng ◽  
Tao Luo ◽  
Yanna Gao ◽  
Lili Zhang ◽  
Xing Huang ◽  
...  
2019 ◽  
Vol 43 (2) ◽  
pp. 99-120 ◽  
Author(s):  
Xi Meng ◽  
Junfei Du ◽  
Yating Wang ◽  
Yanna Gao

Under air-conditioning intermittent operation, there may be the large difference of air temperatures in two adjacent rooms due to different operation behavior, and thereby, interior envelops may cause great heat loss. Under this condition, floors may become the most vulnerable spot of the room heat preservation due to their large proportion in interior envelops and poor thermal insulation. To optimize the thermal performance of floors, three floor models were built to compare their thermal performance characteristics under air-conditioning intermittent operation, while a heat transfer model was built by the finite volume method and verified by experimental data. The results showed that an expanded polystyrene layer located close to the upper surface can improve the thermal performance of the bottom floor, while the continuous integration of an air space ceiling placed close to the lower surface can improve the thermal performance of the top floor obviously. The daily cooling load formed by the cast-in-place-reinforced concrete floor integrated with the expanded polystyrene layer and the air space ceiling can reduce the daily cooling load by 53.27% and 47.00%, compared with the cast-in-place-reinforced concrete floor and the cast-in-place-reinforced concrete floor only integrated with the expanded polystyrene layer.


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


2019 ◽  
Vol 15 ◽  
pp. 100518
Author(s):  
A. Siricharoenpanich ◽  
S. Wiriyasart ◽  
R. Prurapark ◽  
P. Naphon

Author(s):  
Ayako Funabiki ◽  
Taisei Yabuki ◽  
Masahito Oguma

A ground source heat reference map (GSHRM) shows the minimum necessary thermal performance of the ground heat exchanger (GHE) of a ground source heat pump (GSHP) system. Thermal performance depends on thermal properties of the ground, the ground temperature profile, heat advection by groundwater flow, and the GHE operating pattern. This study modeled optimum heating and cooling modes for a GSHRM. First, continuous and intermittent operation modes were compared, and a standard operation time was defined. In a standard household GSHP system, the quantity of heat transferred from the ground depends on household energy demand, which is relatively constant. Once the demand is known, an operation mode is selected that can meet it. Continuous operation increased the total amount of heat exchanged over a period of time but lowered the heat flux at the GHE, whereas intermittent operation with relatively long stopped periods decreased the total amount of heat but did not greatly decrease the heat flux at the GHE. Second, energy-saving efficiency and cost factors were compared among intermittent operation modes. Operation costs consist of the electrical energy supplied to the heat and circulation pumps. At a given operation time, the energy supplied to the heat pump depends on its coefficient of performance (COP), whereas that supplied to the circulation pump depends on its pressure loss, hence on the GHE length. A long GHE has a higher initial cost. Thus, the optimum heating pattern must consider the configuration of the GSHP system, including energy-saving efficiency and cost factors.


Author(s):  
Meng Yuan ◽  
Yisheng Huang ◽  
Jiayi He ◽  
Jialun Li ◽  
Ruochen Xu ◽  
...  

2020 ◽  
Vol 143 ◽  
pp. 02044
Author(s):  
Gao Chunxue ◽  
Wu Songlin ◽  
Lang Junqian ◽  
Liu Qiuxin

This paper presents a case study of phase change cooling and heating wall radiant (PC-CHWR) air conditioning system application in an energy-saving renovation project in a laboratory in Wuhan, Hubei province in China. To test the thermal performance of the system, the PHOENICS software was utilized to simulate and analyse the indoor thermal environment in the laboratory under both winter and summer operating conditions. In addition, field experiments were also conducted under winter operation condition. By comparing the results between numerical simulation and field experiment, it is found that thermal performance of the PC-CHWR air conditioning system evaluated by these two evaluation methods are quite match. Moreover, the results also show that the PC-CHWR system can meet the cooling and heating load of the building within the acceptable range.


Sign in / Sign up

Export Citation Format

Share Document