Design of a heat recovery unit using exhaust gases for energy savings in an absorption air conditioning unit

Author(s):  
Mostafa El-Shafie ◽  
M. Khalil Bassiouny ◽  
Shinji Kambara ◽  
Samy M. El-Behery ◽  
A.A. Hussien
Author(s):  
Ghulam Abbas Gohar ◽  
Muhammad Zia Ullah Khan ◽  
Hassan Raza ◽  
Arslan Ahmad ◽  
Yasir Raza ◽  
...  

The exhaust gases from an internal combustion (IC) engine carry away about 75% of the heat energy which means only 25% of heat energy is operated for power production. A recovery unit at the exhaust outlet port can ensure heat exchange between different temperature fluids through conjugate heat transfer phenomena. This study represents heat recovery from exhaust gases that are emitted from IC engines which can be utilized in various applications such as vapor absorption refrigeration systems. In the present work, a new type of perforated fin heat exchanger for waste heat recovery of exhaust gases is designed using SolidWorks, and the flow field design of the heat recovery system is optimized using ANSYS software. Various parameters (velocity, pressure, temperature, and heat conduction) of hot and cold fluid have been analyzed. Inlet velocity of cold fluids including refrigerant (LiBr solution), water, and graphene oxide (GO) nanofluid have been adopted at 0.03 m/s, 0.165 m/s, and 0.3 m/s, respectively. Inlet velocity of hot fluid is taken as 2 m/s, 4 m/s, and 6 m/s, respectively, to develop a test matrix. The results showed that maximum temperature reduction by the exhaust is achieved at 104.8°C using graphene oxide nanofluids with an inlet velocity of 0.3 m/s and exit velocity of 2 m/s in the heat recovery unit. Similarly, temperature reduction by exhaust gases is acquired at 102 °C using water and 96.34 °C by using a refrigerant (LiBr solution) with the same exit velocity (2 m/ s). Furthermore, maximum effectiveness of 0.489 is also obtained for GO nanofluid when compared with water and the refrigerant. On the other hand, the refrigerant has the maximum log mean temperature difference from all fluids with a value of 224.4 followed by water and GO.


2013 ◽  
Vol 42 (5) ◽  
pp. 377-388 ◽  
Author(s):  
Guoyuan Ma ◽  
Feng Zhou ◽  
Ting Liu ◽  
Liangbing Wang ◽  
Zhongliang Liu

Author(s):  
Giovanni Cerri ◽  
Marco Gazzino ◽  
Fabio Botta ◽  
Coriolano Salvini

This paper is focused on exploring the potential of connecting air-conditioning plants to primary thermal sources qualified by temperatures. Several connection layouts between plant components and thermal sources are investigated. Traditional systems including chillers and heat pumps, as well as systems based on chillers equipped with partial or total heat recovery devices are considered. The influence of primary thermal-source temperatures on overall design performance of such systems is deeply investigated and results focusing on power consumption and energy savings, as well as on reduction of CO2 emissions produced by the source of mechanical work, will be presented and widely discussed.


2013 ◽  
Vol 649 ◽  
pp. 307-310
Author(s):  
Ondřej Nehasil ◽  
Daniel Adamovský

Decreasing heat load of buildings and their cooling is a major problem affecting the quality of both inner environment and air-conditioning system's energy demands. One of the alternatives using regular components of a standard air-conditioning unit is indirect adiabatic cooling. By means of a customized calculation procedure, this article demonstrates performance possibilities, energy savings and the economic benefits of indirect adiabatic cooling connected with a heat recovery heat exchanger on two air-conditioning unit alternatives.


2018 ◽  
Vol 44 ◽  
pp. 00019
Author(s):  
Aleksandra Cichoń ◽  
Anna Pacak ◽  
Demis Pandelidis ◽  
Sergey Anisimov

This paper investigates the potential of applying an indirect evaporative cooler for heat recovery in air conditioning systems in moderate climates. The counter-flow indirect evaporative heat and mass exchanger is compared with commonly used recuperation unit in terms of achieved energy. The performance analysis of the indirect evaporative exchanger is carried out with original ε-NTU-model considering condensation from treated air. It was found that the indirect evaporative exchanger employed as a heat recovery device, allows to obtain higher performance than conventional recuperator. Additional energy savings potential is related with utilizing the potential of water evaporation to pre-cool the outdoor air. It is also stated that there is a high potential of reusing condensate that forms in product channels of the indirect evaporative exchanger and in the vapour-compression unit and delivering it to the working part of the indirect evaporative exchanger.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document