scholarly journals Reducing energy consumption of air-conditioning systems in moderate climates by applying indirect evaporative cooling

2018 ◽  
Vol 44 ◽  
pp. 00019
Author(s):  
Aleksandra Cichoń ◽  
Anna Pacak ◽  
Demis Pandelidis ◽  
Sergey Anisimov

This paper investigates the potential of applying an indirect evaporative cooler for heat recovery in air conditioning systems in moderate climates. The counter-flow indirect evaporative heat and mass exchanger is compared with commonly used recuperation unit in terms of achieved energy. The performance analysis of the indirect evaporative exchanger is carried out with original ε-NTU-model considering condensation from treated air. It was found that the indirect evaporative exchanger employed as a heat recovery device, allows to obtain higher performance than conventional recuperator. Additional energy savings potential is related with utilizing the potential of water evaporation to pre-cool the outdoor air. It is also stated that there is a high potential of reusing condensate that forms in product channels of the indirect evaporative exchanger and in the vapour-compression unit and delivering it to the working part of the indirect evaporative exchanger.

Author(s):  
G. Schmitz ◽  
A. Joos ◽  
W. Casas

During summer, the use of conventional electrically driven air conditioning systems often results in high electricity consumption. On the other hand, heat demand is very low, therefore heat from Combined Heat and Power plants (CHP) or from solar collectors can not be used. Thermal driven desiccant assisted air conditioning systems offer the possibility to shift energy requirements from electricity to heat. Furthermore, as sorptive pre-drying air doesn’t require cooling under dew point for dehumidifying nor any subsequent heating, cold sources at higher temperatures (e.g. 18°C) can be used for cooling. Within the scope of research projects, different demonstration plants for office buildings and a private bungalow were built, where the operations were evaluated by the Hamburg University of Technology. One plant combines a desiccant wheel with a small (5 kWel) gas driven co-generation plant. Instead of an electric chiller or a water evaporation system (desiccant evaporating cooling), borehole heat exchangers in combination with a radiant floor heating system were used for cooling in summer. In this paper, performance comparisons with conventional systems based on numerical simulations and measurement data are shown, including a cost analysis. It is found that the combination of desiccant wheels and earth energy systems offers considerable energy savings compared to conventional electric systems. The operation of such systems is also cost-effective. It can lead to a reduction of up to 28% of primary energy consumption in a whole year compared to a conventional A/C system.


Author(s):  
Mostafa El-Shafie ◽  
M. Khalil Bassiouny ◽  
Shinji Kambara ◽  
Samy M. El-Behery ◽  
A.A. Hussien

2019 ◽  
Vol 111 ◽  
pp. 04042
Author(s):  
Nicolás Ablanque ◽  
Santiago Torras ◽  
Carles Oliet ◽  
Joaquim Rigola ◽  
Carlos-David Pérez-Segarra

The simulation of HVAC systems is a powerful tool to improve the energy efficiency in buildings. The modelling of such systems faces several obstacles due to both the physical phenomenology present and the numerical resolution difficulties. The present work is an attempt to develop a robust, fast, and accurate model for HVAC systems that can interact with the other relevant systems involved in buildings thermal management. The whole system model has been developed in the form of libraries under the Modelica language to exploit its advantageous characteristics: object-oriented programming, equationbased modelling, and handling of multi-physics. The global resolution is carried out dynamically so that not only steady-state predictions can be conducted but also control strategies can be studied over meaningful periods of time. This latter aspect is crucial for optimizing energy savings. The libraries include models for all the system individual components such as pumps, compressors or heat exchangers (operating with twophase flows and/or moist air) and also models assemblies to account for vapour compression units and liquid circuits. An illustrative example of an indirect air conditioning system is detailed in the present work in order to highlight the model potential.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Su Liu ◽  
Jae-Weon Jeong

This study investigated the annual energy saving potential and system performance of two different evaporative cooling-based liquid desiccant and evaporative cooling-assisted air conditioning systems. One system used an indirect and direct evaporative cooler with a two-stage package to match the target supply air point. The other was equipped with a single-stage, packaged dew-point evaporative cooler that used a portion of the process air, which had been dehumidified in advance. Systems installed with the two evaporative coolers were compared to determine which one was more energy efficient and which one could provide better thermal comfort for building occupants in a given climate zone, using detailed simulation data. The detailed energy consumption data of these two systems were estimated using an engineering equation solver with each component model. The results showed that the liquid desiccant and dew-point evaporative-cooler-assisted 100% outdoor air system (LDEOAS) resulted in approximately 34% more annual primary energy consumption than that of the liquid desiccant and the indirect and direct evaporative-cooler-assisted 100% outdoor air system (LDIDECOAS). However, the LDEOAS could provide drier and cooler supply air, compared with the LDIDECOAS. In conclusion, LDIDECOAS has a higher energy saving potential than LDEOAS, with an acceptable level of thermal comfort.


2017 ◽  
Vol 11 (21) ◽  
pp. 103
Author(s):  
Ricardo A. Lugo-Villalba ◽  
Mario Álvarez Guerra ◽  
Bienvenido Sarria López

The development of ship propulsion in the areas of Economic Operation, Environmental Protection and Ship Efficiency (Triple E - Economy, Environment, Efficiency) is the comparison standard of the manufacturers of contemporary ships. The standard is based on the application of a more modern design of the diesel engines, the wide use of waste heat and the efficient operation of the ship.In accordance with the Economic Operation, the need to evaluate the design of air conditioning systems has been identified in order to determine the possible savings, which are represented by a decrease in fuel consumption, as a result of: the significant impact of this consumption in the operation of the ship, the current high costs of this energy, the periodic increase in the price of the same, and the international policies for the reduction of emissions to the atmosphere and preservation of the environment.By means of the energy diagnosis of the air conditioning system it is possible to determine the possible opportunities of energy saving during the operation of the ship.The results indicate that the thermal load and the cooling capacity required by the air conditioned spaces have a difference between their maximum and average value of 14%. This justifies the need to use a conditioning system with a variable volume of air supplied to the air conditioned space.


2011 ◽  
Vol 2011.21 (0) ◽  
pp. 248-251
Author(s):  
Ari YOSHII ◽  
Yosuke UDAGAWA ◽  
Masahide YANAGI ◽  
Shisei WARAGAI ◽  
Keigo MATSUO ◽  
...  

2021 ◽  
Vol 937 (4) ◽  
pp. 042037
Author(s):  
Gregory Vasilyev ◽  
Victor Gornov ◽  
Marina Kolesova ◽  
Vitaliy Leskov ◽  
Victoria Silaeva ◽  
...  

Abstract Experimental studies of this article are aimed at solving the problem of reforming the housing and communal services of Russia through rational integration of non-traditional energy sources and secondary energy resources into the energy balance of buildings and structures. An important component of the work was the creation and development of industrial production of reliable competitive heat pump systems of a new generation, cogenerating heat energy and cold in an autonomous mode and providing energy savings of at least 50% due to the combined use of low-potential thermal energy of the soil, the atmospheric air and the exhaust air of ventilation systems for hot water supply and air conditioning systems of apartment buildings.


Sign in / Sign up

Export Citation Format

Share Document