Numerical simulation of combustion process in different heating furnaces

Author(s):  
Shuo Wang
2013 ◽  
Vol 444-445 ◽  
pp. 1574-1578 ◽  
Author(s):  
Hua Hua Xiao ◽  
Zhan Li Mao ◽  
Wei Guang An ◽  
Qing Song Wang ◽  
Jin Hua Sun

A numerical study of premixed propane/air flame propagation in a closed duct is presented. A dynamically thickened flame (TF) method is applied to model the premixed combustion. The reaction of propane in air is taken into account using a single-step global Arrhenius kinetics. It is shown that the premixed flame undergoes four stages of dynamics in the propagation. The formation of tulip flame phenomenon is observed. The pressure during the combustion process grows exponentially at the finger-shape flame stage and then slows down until the formation of tulip shape. After tulip formation the pressure increases quickly again with the increase of the flame surface area. The vortex motion behind the flame front advects the flame into tulip shape. The study indicates that the TF model is quite reliable for the investigation of premixed propane/air flame propagation.


2014 ◽  
Vol 1006-1007 ◽  
pp. 181-184
Author(s):  
Zhu Sen Yang ◽  
Xing Hua Liu ◽  
Shu Chen

The combustion process of municipal solid waste (MSW) in a operating 750t/d grate furnace in Guangzhou was researched by means of numerical simulation. The influence of MSW moisture content on burning effect was discussed. The results show that: with the moisture content dropped from 50% to 30%, the heat value could be evaluated from 13.72% to 54.91% and the average temperature in the furnace could be promoted 90-248°C. However, the combustible gases and particle in the flue gas of outlet would take up a high proportion since lacking of oxygen would lead to an incomplete combustion. The excess air coefficient should be increased to 2.043~2.593 in order to ensure the flue gas residence time more than 2s and temperature in the furnace higher to 800°C.


2014 ◽  
Vol 21 (6) ◽  
pp. 747-754 ◽  
Author(s):  
A. S. Askarova ◽  
V. E. Messerle ◽  
A. B. Ustimenko ◽  
S. A. Bolegenova ◽  
V. Yu. Maksimov

Sign in / Sign up

Export Citation Format

Share Document