The influence of four-wire structure on the flow and heat transfer process in supercritical water-cooled reactor fuel assembly

Author(s):  
Zhirui Zhao ◽  
Jianxin Shi ◽  
Baozhi Sun ◽  
Yitung Chen ◽  
Wanze Wu ◽  
...  
1970 ◽  
Author(s):  
J.M. Yatabe ◽  
R.E. Collingham ◽  
V.R. Hill ◽  
T.I. McSweeney ◽  
W.L. Thorne

Author(s):  
Laurence K. H. Leung ◽  
Yanfei Rao ◽  
Krishna Podila

Experimental data and correlations are not available for the fuel-assembly concept of the Canadian supercritical water-cooled reactor (SCWR). To facilitate the safety analyses, a strategy for developing a heat-transfer correlation has been established for the fuel-assembly concept at supercritical pressure conditions. It is based on an analytical approach using a computational fluid dynamics (CFD) tool and the ASSERT subchannel code to establish the heat transfer in supercritical pressure flow. Prior to the application, the CFD tool was assessed against experimental heat transfer data at the pseudocritical region obtained with bundle subassemblies to identify the appropriate turbulence model for use. Beyond the pseudocritical region, where the normal heat transfer behavior is anticipated, the ASSERT subchannel code also was assessed with appropriate closure relationships. Detailed information on the supporting experiments and the assessment results of the computational tools are presented.


In this paper we investigate the natural convective heat transfer process inside a ventilated rectangular cavity with a projected heat source. The heat source block is mounted on the bottom wall and a horizontal vent is provided on the top wall of the rectangular cavity. The flow is induced due to the density difference which arises due to the variations in temperature between the heat source block and the surrounding ambient fluid. A FORTRAN 90 CFD solver is developed to simulate the natural convection phenomena by solving the Navier-stokes equation, energy equation coupled with Realizable k-ε turbulence model. The transient flow behavior inside the cavity is simulated by varying the heat source aspect ratios, Grashof number and the heat source locations. It is found that the heat source aspect ratio and its locations significantly influences the flow and heat transfer characteristics inside the cavity. The bidirectional exchange rate across the horizontal opening increases linearly with Grashof number and heat source aspect ratio. A chaotic flow behavior pattern is observed across the opening and the strength of the instabilities increases linearly with heat source aspect ratio. It is identified that by varying the aspect ratio 0.1 ≤ β ≤ 3, the average Nusselt number and mass flow rates are increased by 28% and 43% respectively.


Sign in / Sign up

Export Citation Format

Share Document