Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut

2011 ◽  
Vol 49 ◽  
pp. 215-223 ◽  
Author(s):  
P. Latha ◽  
T. Anand ◽  
V. Prakasam ◽  
E.I. Jonathan ◽  
M. Paramathma ◽  
...  
Author(s):  
Aradhna Sagwal ◽  
Satish Kumar ◽  
Kushal Raj

Background: Tomato (Solanum lycopersicum L.) is an important vegetable crop not only for its economic importance but also for its nutritional value. It remained prone to various diseases and amongst them, root rot disease complex caused by concomitant occurrence of R. solani and M. javanica has been key problem in Haryana resultantly reduces yield and production to great extent. Methods: Present study was carried out with the aim to evaluate the effect of organic amendments and biocontrol agents on root rot disease complex in tomato cv. Hisar Arun (Selection 7). Tomato seeds were sown @ 10 seeds/pot filled with sterilized sandy loam soil having 1000 mg/kg soil (Rhizoctonia solani inoculum level) and 1000 J2/kg soil (M. javanica inoculum level). Result: The minimum mortality of 33.3 and 36.6 per cent was observed when the soils were incorporated with mustard cake @ 2g/kg soil followed by cotton cake @ 2g/kg soil in comparison to total mortality of 63.3 per cent in control pots and the soil application of mustard cake protected 47.4 per cent plants from mortality. The application of Glomus mosseae (VAM) at 200, 150, 100 sporocarps/kg soil managed disease to the extent of 36.8% 21.0% and 10.4% respectively. Incorporation of T. harzianum@ 5g/kg soil and 10g/kg soil managed the disease to the extent of 21% and 42% respectively. The minimum mortality of 33.3% was recorded when seeds were dressed with Carbendazim 50WP whereas 36.6 per cent with Carboxin 37.5WP + Thiram 37.5WP in comparison to 63.3 per cent in control pots. Systemic approach to manage the root-rot disease complex with the help of organic amendments, bioagents and fungicides can prevent the losses caused to the crop.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


Sign in / Sign up

Export Citation Format

Share Document