Conserved Markers Order in Quantitative Trait Loci Confer Resistance Against Black Root Rot Disease in Cotton, (Gossypium)

2020 ◽  
Vol 13 (3) ◽  
pp. 1265-1270
Author(s):  
Anh Phu Nam Bui Anh Phu Nam Bui
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farid Abd-El-Kareem ◽  
Ibrahim E. Elshahawy ◽  
Mahfouz M. M. Abd-Elgawad

Abstract Background Black root rot of strawberry plants caused by Rhizoctonia solani, Fusarium solani, and Pythium sp. is a serious disease in Egypt. Biocontrol agents have frequently proved to possess paramount and safe tools against many diseases. The impact of soil treatments with 3 Bacillus pumilus isolates on black root rot disease of strawberry plants caused by R. solani, F., and Pythium sp. under laboratory and field conditions was examined herein on the commonly used ‘Festival’ strawberry cultivar. To increase the bacterial adhesion and distribution on the roots, each seedling was dipped in bacterial cell suspension at 1 × 108 colony-forming units/ml of each separate bacterial isolate for 30 min then mixed with 5% Arabic gum. Results The tested B. pumilus isolates significantly reduced the growth area of these 3 fungi. The two bacterial isolates Nos. 2 and 3 reduced the growth area by more than 85.2, 83.6, and 89.0% for R. solani, F. solani, and Pythium sp., respectively. Likewise, the 3 bacterial isolates significantly (P ≤ 0.05) inhibited the disease under field conditions. Isolates Nos. 2 and 3 suppressed the disease incidence by 64.4 and 68.9% and disease severity by 65.3 and 67.3%, respectively. The fungicide Actamyl had effect similar to that of the 2 isolates. B. pumilus isolates significantly enhanced growth parameters and yields of strawberry plants; isolates Nos. 2 and 3 raised the yield by 66.7 and 73.3%, respectively. Conclusions Bacillus pumilus isolates could effectively manage the black rot disease in strawberry herein. Due to the significant impact of the root rot disease on strawberry yield, B. pumilus should be further tested to manage the disease on strawberry on large scale in Egypt.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alemayehu Dugassa ◽  
Tesfaye Alemu ◽  
Yitbarek Woldehawariat

Abstract Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.


2003 ◽  
Vol 83 (4) ◽  
pp. 939-942 ◽  
Author(s):  
H. M. Haji ◽  
R. A. Brammall ◽  
D. L. VanHooren

The effects of Nicotiana debneyi-derived resistance to black root rot disease were evaluated for yield, agronomic and quality traits by comparing the near isogenic cultivars AC Gayed (resistant) and Delgold (susceptible). Over 7 yr of trials the possession of resistance led to yields and economic returns that averaged 6 and 7% lower, respectively, than for the susceptible line. Key words: Flue-cured tobacco, Nicotiana tabaccum, Black Root Rot, Chalara elegans, Nicotiana debneyi, yield, quality


2011 ◽  
Vol 91 (1) ◽  
pp. 199-204 ◽  
Author(s):  
J. Feng ◽  
R. Hwang ◽  
K. F. Chang ◽  
R. L. Conner ◽  
S. F. Hwang ◽  
...  

Feng, J., Hwang, R., Chang, K. F., Conner, R. L., Hwang, S. F., Strelkov, S. E., Gossen, B. D., McLaren, D. L. and Xue, A. G. 2011. Identification of microsatellite markers linked to quantitative trait loci controlling resistance to Fusarium root rot in field pea. Can. J. Plant Sci. 91: 199–204. Fusarium root rot, caused by Fusarium solani (Mart.) Sacc. f. sp. pisi (F. R. Jones) W. C. Snyder & H. N. Hans, is the most common root disease of field pea (Pisum sativum L.) in western Canada. In this study, a recombinant inbred line (RIL) population (n=71) of field pea, derived from crosses between a resistant cultivar Carman, and a susceptible cultivar Reward, was evaluated to identify quantitative trait loci (QTL) controlling resistance to Fusarium root rot. The parental genotypes and RILs were evaluated for resistance to root rot following inoculation with F. solani in field experiments during 2007 and 2008. The frequency distribution of disease severities among the RILs was continuous. Transgressive segregation for resistance was observed among the RILs, with five lines more resistant than Carman, but no lines were more susceptible than Reward. To identify DNA markers linked with the resistance, 213 microsatellite markers were screened with genomic DNA from the two parental cultivars. Only 14 markers were polymorphic between the two parents and were used to genotype each of the RILs. Quantitative trait loci analysis based on the mean disease severity data from 2007 and 2008 identified a QTL that explained 39.0% of the phenotypic variance in the RIL population. This QTL is flanked by markers AA416 and AB60 on linkage group VII. The microsatellite markers that are closely linked to this QTL may be useful for marker assisted selection to develop cultivars with superior Fusarium root rot resistance.


2002 ◽  
Vol 106 (1) ◽  
pp. 28-39 ◽  
Author(s):  
M. Pilet-Nayel ◽  
F. Muehlbauer ◽  
R. McGee ◽  
J. Kraft ◽  
A. Baranger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document