pea root rot
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Adnan Šišić ◽  
Thomas Oberhänsli ◽  
Jelena Baćanović-Šišić ◽  
Pierre Hohmann ◽  
Maria Renate Finckh

Didymella pinodella is the major pathogen of the pea root rot complex in Europe. This wide host range pathogen often asymptomatically colonizes its hosts, making the control strategies challenging. We developed a real-time PCR assay for the detection and quantification of D. pinodella based on the TEF-1 alpha gene sequence alignments. The assay was tested for specificity on a 54-isolate panel representing 35 fungal species and further validated in symptomatic and asymptomatic pea and wheat roots from greenhouse tests. The assay was highly consistent across separate qPCR reactions and had a quantification/detection limit of 3.1 pg of target DNA per reaction in plant tissue. Cross-reactions were observed with DNA extracts of five Didymella species. The risk of cross contamination, however, is low as the non-targets have not been associated with pea previously and they were amplified with at least 1000-fold lower sensitivity. Greenhouse inoculation tests revealed a high correlation between the pathogen DNA quantities in pea roots and pea root rot severity and biomass reduction. The assay also detected D. pinodella in asymptomatic wheat roots, which, despite the absence of visible root rot symptoms, caused wheat biomass reduction. This study provides new insights into the complex life style of D. pinodella and can assist in better understanding the pathogen survival and spread in the environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lukas Wille ◽  
Mario Kurmann ◽  
Monika M. Messmer ◽  
Bruno Studer ◽  
Pierre Hohmann

Plant health is recognised as a key element to ensure global food security. While plant breeding has substantially improved crop resistance against individual pathogens, it showed limited success for diseases caused by the interaction of multiple pathogens such as root rot in pea (Pisum sativum L.). To untangle the causal agents of the pea root rot complex and determine the role of the plant genotype in shaping its own detrimental or beneficial microbiome, fungal and oomycete root rot pathogens, as well as previously identified beneficials, i.e., arbuscular mycorrhizal fungi (AMF) and Clonostachys rosea, were qPCR quantified in diseased roots of eight differently resistant pea genotypes grown in four agricultural soils under controlled conditions. We found that soil and pea genotype significantly determined the microbial compositions in diseased pea roots. Despite significant genotype x soil interactions and distinct soil-dependent pathogen complexes, our data revealed key microbial taxa that were associated with plant fitness. Our study indicates the potential of fungal and oomycete markers for plant health and serves as a precedent for other complex plant pathosystems. Such microbial markers can be used to complement plant phenotype- and genotype-based selection strategies to improve disease resistance in one of the world’s most important pulse crops of the world.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


2020 ◽  
Vol 35 (2) ◽  
pp. 186-189
Author(s):  
B. R. Thakur ◽  
Nisha Kumari ◽  
Priya Bhargava ◽  
Dimple Rana

2018 ◽  
Vol 67 (9) ◽  
pp. 1912-1923 ◽  
Author(s):  
T. L. Willsey ◽  
S. Chatterton ◽  
M. Heynen ◽  
A. Erickson

2018 ◽  
Vol 19 (3) ◽  
pp. 212-219
Author(s):  
Chryseis T. Modderman ◽  
Samuel Markell ◽  
Michael Wunsch ◽  
Julie S. Pasche

Field pea (Pisum sativum L.) root rot has resulted in substantial yield losses in North Dakota, with symptoms ranging from small lesions to complete root destruction. Traditional management practices such as seed treatment fungicides and crop rotation have proven insufficient under high disease pressure. The objective of this research was to determine the efficacy of in-furrow fungicide applications for management of field pea root rot under greenhouse and field conditions. In-furrow fungicides generally reduced root rot severity, sometimes significantly over the seed treatment in the field; however, the level of control varied across hosts and pathogens in both greenhouse and field trials. Prothioconazole, fluopyram, and penthiopyrad provided the most consistent results across trials. The results of these studies indicate that the use of in-furrow fungicides provides growers with another tool for managing Fusarium root rot.


2017 ◽  
Vol 63 (9) ◽  
pp. 758-768 ◽  
Author(s):  
A. Esmaeili Taheri ◽  
S. Chatterton ◽  
B.D. Gossen ◽  
D.L. McLaren

Oomycetes are a diverse group of microorganisms; however, little is known about their composition and biodiversity in agroecosystems. Illumina MiSeq was used to determine the type and abundance of oomycetes associated with pea root rot in the Canadian prairies. Additional objectives of the study were to identify differences in oomycete communities associated with pea root health and compare oomycete communities among the 3 prairie provinces, where field peas are commonly cultivated. Samples of soil from the rhizosphere of field pea (Pisum sativum L.) were collected from patches of asymptomatic or diseased plants from 26 commercial fields in 2013 and 2014. Oomycete communities were characterized using metagenomic analysis of the ITS1 region on Illumina MiSeq. From 105 identified operational taxonomic units (OTUs), 45 and 16 oomycete OTUs were identified at species and genus levels, respectively. Pythium was the most prevalent genus and Pythium heterothallicum the most prevalent species in all 3 provinces in both 2013 and 2014. Aphanomyces euteiches, a very important pea root rot pathogen in regions of the prairies, was detected in 57% of sites but at very low abundance (<0.2%). Multivariate analysis revealed differences in the relative abundance of species in oomycete communities between asymptomatic and diseased sites, and among years and provinces. This study demonstrated that deep amplicon sequencing can provide information on the composition and diversity of oomycete communities in agricultural soils.


2015 ◽  
Vol 392 (1-2) ◽  
pp. 227-238 ◽  
Author(s):  
Shakhawat Hossain ◽  
Göran Bergkvist ◽  
Robert Glinwood ◽  
Kerstin Berglund ◽  
Anna Mårtensson ◽  
...  

2014 ◽  
Vol 62 (20) ◽  
pp. 4584-4591 ◽  
Author(s):  
Shakhawat Hossain ◽  
Göran Bergkvist ◽  
Kerstin Berglund ◽  
Robert Glinwood ◽  
Patrick Kabouw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document