scholarly journals Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet

2015 ◽  
Vol 90 ◽  
pp. 35-40 ◽  
Author(s):  
Zhen-Xi Shen ◽  
Yun-Long Li ◽  
Gang Fu
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen Li ◽  
Jinlan Wang ◽  
Xiaolong Li ◽  
Shilin Wang ◽  
Wenhui Liu ◽  
...  

Abstract Soil respiration (Rs) plays a critical role in the global carbon (C) balance, especially in the context of globally increasing nitrogen (N) deposition. However, how N-addition influences C cycle remains unclear. Here, we applied seven levels of N application (0 (N0), 54 (N1), 90 (N2), 126 (N3), 144 (N4), 180 (N5) and 216 kg N ha−1 yr−1 (N6)) to quantify their impacts on Rs and its components (autotrophic respiration (Ra) and heterotrophic respiration (Rh)) and C and N storage in vegetation and soil in alpine meadow on the northeast margin of the Qinghai-Tibetan Plateau. We used a structural equation model (SEM) to explore the relative contributions of C and N storage, soil temperature and soil moisture and their direct and indirect pathways in regulating soil respiration. Our results revealed that the Rs, Ra and Rh, C and N storage in plant, root and soil (0–10 cm and 10–20 cm) all showed initial increases and then tended to decrease at the threshold level of 180 kg N ha−1 yr−1. The SEM results indicated that soil temperature had a greater impact on Rs than did volumetric soil moisture. Moreover, SEM also showed that C storage (in root, 0–10 and 10–20 cm soil layers) was the most important factor driving Rs. Furthermore, multiple linear regression model showed that the combined root C storage, 0–10 cm and 10–20 cm soil layer C storage explained 97.4–97.6% variations in Rs; explained 94.5–96% variations in Ra; and explained 96.3–98.1% in Rh. Therefore, the growing season soil respiration and its components can be well predicted by the organic C storage in root and topsoil in alpine meadow of the north-eastern Qinghai-Tibetan Plateau. Our study reveals the importance of topsoil and root C storage in driving growing season Rs in alpine meadow on the northeast margin of Qinghai-Tibetan Plateau.


2016 ◽  
Vol 36 (19) ◽  
Author(s):  
薛会英 XUE Huiying ◽  
罗大庆 LUO Daqing ◽  
胡锋 HU Feng ◽  
李辉信 LI Huixin ◽  
王景升 WANG Jingsheng ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Cheng-Qun Yu ◽  
Zhen-Xi Shen ◽  
Xian-Zhou Zhang ◽  
Wei Sun ◽  
Gang Fu

Although alpine meadows of Tibet are expected to be strongly affected by climatic warming, it remains unclear how soil organic C (SOC), total N (TN), ammonium N(NH4+-N), nitrate N(NO3+-N), and dissolved organic C (DOC) and N (DON) respond to warming. This study aims to investigate the responses of these C and N pools to short-term experimental warming in an alpine meadow of Tibet. A warming experiment using open top chambers was conducted in an alpine meadow at three elevations (i.e., a low (4313 m), mid-(4513 m), and high (4693 m) elevation) in May 2010. Topsoil (0–20 cm depth) samples were collected in July–September 2011. Experimental warming increased soil temperature by ~1–1.4°C but decreased soil moisture by ~0.04 m3m−3. Experimental warming had little effects on SOC, TN, DOC, and DON, which may be related to lower warming magnitude, the short period of warming treatment, and experimental warming-induced soil drying by decreasing soil microbial activity. Experimental warming decreased significantly inorganic N at the two lower elevations,but had negligible effect at the high elevation. Our findings suggested that the effects of short-term experimental warming on SOC, TN and dissolved organic matter were insignificant, only affecting inorganic forms.


2016 ◽  
Vol 64 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Zhen-Xi Shen ◽  
Jiang-Wei Wang ◽  
Wei Sun ◽  
Shao-Wei Li ◽  
Gang Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document