Repetitive laser pulse heating analysis: Pulse parameter variation effects on closed form solution

2006 ◽  
Vol 252 (6) ◽  
pp. 2242-2250 ◽  
Author(s):  
M. Kalyon ◽  
B.S. Yilbas
Author(s):  
B S Yilbas ◽  
M Kalyon

Modelling of laser pulse heating of metallic substrates reduces the experimental cost and optimizes the laser heating parameters. In the present study, exponentially time-varying laser pulse heating with convective boundary conditions at the surface is considered. The closed-form solution for temperature distribution at the surface is presented. The effects of the heat transfer coefficient ( h∗) and pulse parameter (β∗) on the time corresponding to the maximum surface temperature ( t∗Tmax is significant for h∗≥0.02. Moreover, reducing the pulse parameter lowers t∗Tmax.


Author(s):  
B S Yilbas ◽  
M Kalyon

Modelling of the laser heating process is fruitful, since it enhances the understanding of the physical processes involved and minimizes the experimental cost. In the present study, an analytical solution for the temperature distribution inside the solid substrate is obtained using a Laplace transform method. A time exponentially decaying laser pulse profile is introduced in the analysis. The phase change process and recession velocity are accommodated to account for the evaporation at the surface. The closed-form solution obtained is compared with the analytical solution obtained previously for a conduction limited heating case. It is found that the closed-form solution obtained from the present study reduces to a previously obtained analytical solution when the pulse parameter, β∗, is set to zero in the closed-form solution. Temperature predictions from simulations agree well with the results obtained from the closed-form solution.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Sign in / Sign up

Export Citation Format

Share Document