Variation in plant species composition in and adjacent to 64 ponds in SE Norwegian agricultural landscapes

2006 ◽  
Vol 85 (2) ◽  
pp. 92-102 ◽  
Author(s):  
Anette Edvardsen ◽  
Rune Halvorsen Økland
2011 ◽  
Vol 59 (4) ◽  
pp. 369 ◽  
Author(s):  
Suzanne M. Prober ◽  
Rachel J. Standish ◽  
Georg Wiehl

Emerging ecological theory predicts that vegetation changes caused by introduction of livestock grazing may be irreversible after livestock are removed, especially in regions such as Australia that have a short evolutionary exposure to ungulate grazing. Despite this, fencing to exclude livestock grazing is the major tool used to restore vegetation in Australian agricultural landscapes. To characterise site-scale benefits and limitations of livestock exclusion for enhancing biodiversity in forb-rich York gum (Eucalyptus loxophleba Benth. subsp. loxophleba)–jam (Acacia acuminata Benth.) woodlands, we compared 29 fenced woodlands with 29 adjacent grazed woodlands and 11 little-grazed ‘benchmark’ woodlands in the Western Australian wheatbelt. We explored the following two hypotheses: (1) fencing to exclude livestock facilitates recovery of grazed woodlands towards benchmark conditions, and (2) without additional interventions after fencing, complete recovery of grazed woodlands to benchmark conditions is constrained by ecological or other limits. Our first hypothesis was supported for vegetation parameters, with fenced woodlands being more similar to benchmark woodlands in tree recruitment, exotic plant cover, native plant cover, native plant richness and plant species composition than were grazed woodlands. Further, exotic cover decreased and frequency of jam increased with time-since-fencing (2–22 years). However, we found no evidence that fencing led to decline in topsoil nutrient concentrations towards concentrations at benchmark sites. Our second hypothesis was also supported, with higher topsoil nutrient concentrations and exotic plant cover, and lower native plant richness in fenced than in benchmark woodlands, and different plant species composition between fenced and benchmark woodlands. Regression analyses suggested that recovery of native species richness is constrained by exotic species that persist after fencing, which in turn are more persistent at higher topsoil nutrient concentrations. We conclude that fencing to exclude livestock grazing can be valuable for biodiversity conservation. However, consistent with ecological theory, additional interventions are likely to be necessary to achieve some conservation goals or to promote recovery at nutrient-enriched sites.


Author(s):  
Kateřina Francová ◽  
Kateřina Šumberová ◽  
Andrea Kučerová ◽  
Michal Šorf ◽  
Stanislav Grill ◽  
...  

2017 ◽  
Vol 138 ◽  
pp. 9-15 ◽  
Author(s):  
A. Moges ◽  
A. Beyene ◽  
A. Ambelu ◽  
S.T. Mereta ◽  
L. Triest ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 3153
Author(s):  
Ditmar Kurtz ◽  
Marcus Giese ◽  
Folkard Asch ◽  
Saskia Windisch ◽  
María Goldfarb

High impact grazing (HIG) was proposed as a management option to reduce standing dead biomass in Northern Argentinean (Chaco) rangelands. However, the effects of HIG on grassland diversity and shifts in plant functional groups are largely unknown but essential to assess the sustainability of the impact. During a two-year grazing experiment, HIG was applied every month to analyze the seasonal effects on plant species composition and plant functional groups. The results indicate that irrespective of the season in which HIG was applied, the diversity parameters were not negatively affected. Species richness, the Shannon–Wiener diversity index and the Shannon’s equitability index did not differ from the control site within a 12-month period after HIG. While plant functional groups of dicotyledonous and annual species could not benefit from the HIG disturbance, C3-, C4-monocotyledonous and perennials increased their absolute and relative green cover. Our results suggest that HIG, if not applied in shorter frequencies than a year, neither alters diversity nor shifts the plant species composition of the grassland plant community, but instead it promotes previously established rather competitive species. HIG could therefore contribute as an alternative management practice to the sustainable land use intensification of the “Gran Chaco” grassland ecosystem and even counteract the encroachment of “low value” species.


2021 ◽  
Vol 67 (3-4) ◽  
pp. 149-155
Author(s):  
Har'el Agra ◽  
Hadar Shalom ◽  
Omar Bawab ◽  
Gyongyver J. Kadas ◽  
Leon Blaustein

Abstract Green roofs are expected to contribute to higher biodiversity in urban surroundings. Typically, green roofs have been designed with low plant diversity. However, plant diversity can be enhanced by controlling resource availability and creating distinct niches. Here we hypothesize that by using different drainage heights during the short plant-growing season in a semi-arid green roof system we can create distinct niches and plant communities. Our experiment took place at the University of Haifa, north Israel. We tested three different heights of drainage outlet: 10 cm under the surface of the substrate (Low), 1 cm under the surface of the substrate (Medium) and 3 cm above the surface of the substrate (High) on plant species-composition in green-roof gardens. Grasses cover was higher in High and Medium drainages while forbs cover was higher in Low drainage. Species richness was the highest in Low drainage while diversity indices showed the opposite trend. We conclude that by changing the height of the drainage we can create different niches and change species composition in a short time period of one growing season. This way we can create more diverse green roof communities and enhance biodiversity in urban areas, particularly in semi-arid regions.


Sign in / Sign up

Export Citation Format

Share Document