Genetic parameters and genotype by environment interaction for cold tolerance, body weight and survival of the Pacific white shrimp Penaeus vannamei at different temperatures

Aquaculture ◽  
2015 ◽  
Vol 441 ◽  
pp. 8-15 ◽  
Author(s):  
Wenjia Li ◽  
Sheng Luan ◽  
Kun Luo ◽  
Juan Sui ◽  
Xiaodong Xu ◽  
...  
Aquaculture ◽  
2015 ◽  
Vol 447 ◽  
pp. 102-107 ◽  
Author(s):  
Alejandra Caballero-Zamora ◽  
Hugo H. Montaldo ◽  
Gabriel Ricardo Campos-Montes ◽  
Eugenia Guadalupe Cienfuegos-Rivas ◽  
Alfonso Martínez-Ortega ◽  
...  

Aquaculture ◽  
2021 ◽  
pp. 736905
Author(s):  
Aya S. Hussain ◽  
Deyaaedin A. Mohammad ◽  
Wafaa S. Sallam ◽  
Nahla M. Shoukry ◽  
D. Allen Davis

1970 ◽  
Vol 12 (3) ◽  
pp. 627-634
Author(s):  
J. S. Gavora ◽  
G. C. Hodgson

Traditionally genotype by environment interaction studies have dealt with changes in external environment. In this experiment an attempt was made to alter internal environment and keep external environment constant. Cockerels from each of six different commercial stocks were injected with 0,1,2 and 4 mgs hydrocortisone acetate per 100 gms body weight at 14 days of age. This type of hormonal treatment was shown to release additional variability in growth without producing any stock-treatment interaction at the level of means. The results indicate a possible new avenue for future research.


Author(s):  
Thomas Caceci ◽  
Kay F. Neck ◽  
Donal D H. Lewis ◽  
Raymond F. Sis

Fourteen specimens of the hepatopancreas of the Pacific white shrimp, Penaeus vannamei, were prepared for examination with the transmission and scanning electron microscopes and with the light microscope. The histology and ultrastructure of this organ is similar to that seen in other Decapoda. At the ultrastructural level, it was observed that B-cells rupture at approximately the level of gap junctions located on the lateral plasma membranes of the cells, and discharge the contents of their large vacuoles into the intercellular space. This efflux of enzymatic material may be the mechanism by which cells are released from the wall of the tubule at the proximal end: the rupture and collapse of a B-cell may be analagous to the removal of the keystone which supports an arch. Deprived of support, and lacking structural adaptations for cohesion (there are no desmosomes or interdigitations in the epithelium) and with the intercellular material digested, the remaining intact cells collapse into the lumen of the tubule. The lysis of individual cells of all types - R-, F-, and B-cells - may contribute to the tubules’ total complement of digestive enzymes.


2010 ◽  
Vol 59 (1-6) ◽  
pp. 113-124 ◽  
Author(s):  
Brian. S. Baltunis ◽  
W. J. Gapare ◽  
H. X. Wu

Abstract The phenotypic response of genotypes across different environments can be quantified by estimating the genotype by environment interaction (GxE). In a practical sense, GxE means that the relative performance of genotypes does not remain constant under all test conditions. Genetic parameters and genotype by environment interactions for wood density, growth, branching characteristics and stem straightness were investigated in eight radiata pine progeny trials derived from a second generation breeding population in Australia. Five trials were on the mainland, while three trials were in Tasmania. Generally, ĥ2 for density > branch angle > stem straightness > tree diameter > branch size; and significant ĥ2 was observed for all traits and at all trials with only two exceptions. Genetic correlations were estimated among the five traits, and a large negative genetic correlation observed between wood density and tree diameter indicated that a selection strategy should be developed in dealing with this adverse genetic correlation in advanced generations of breeding for radiata pine. Interactions for density, branch angle, and stem straightness were small within the two regions. Overall, branch angle had the least GxE, followed by density and stem straightness. Growth traits (tree diameter and branch size) tended to be the most interactive with substantial GxE present. Genotype by regional interactions (Mainland versus Tasmania) revealed that density and branch angle had the least interactions (ȓB = 0.98 and ȓB = 0.95, respectively). Branch size and tree diameter had the highest interactions among the two regions (ȓB = 0.55 and ȓB = 0.63, respectively). Within Tasmania, only branch size and tree diameter had a sizable interaction within the three sites. In contrast, there was little interaction for tree diameter among the Mainland trials. Branch size in the Mainland trials had a similar size of interaction as in Tasmania. Further research is recommended in identifying the cause of GxE for tree diameter and branch size in radiata pine across the entire radiata pine estate in Australia.


Sign in / Sign up

Export Citation Format

Share Document