Inulin alleviates hypersaline-stress induced oxidative stress and dysbiosis of gut microbiota in Nile tilapia (Oreochromis niloticus)

Aquaculture ◽  
2020 ◽  
Vol 529 ◽  
pp. 735681
Author(s):  
Li Zhou ◽  
Jiansong Zhang ◽  
Mengzhen Yan ◽  
Shangshang Tang ◽  
Xiaodan Wang ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2983
Author(s):  
Fagr Kh. Abdel-Gawad ◽  
Wagdy K. B. Khalil ◽  
Samah M. Bassem ◽  
Vikas Kumar ◽  
Costantino Parisi ◽  
...  

A two-fold integrated research study was conducted; firstly, to understand the effects of copper (Cu) and zinc (Zn) on the growth and oxidative stress in Nile tilapia, Oreochromis niloticus; secondly, to study the beneficial effects of the duckweed Lemna minor L. as a heavy metal remover in wastewater. Experiments were conducted in mesocosms with and without duckweed. Tilapia fingerlings were exposed to Cu (0.004 and 0.02 mg L−1) and Zn (0.5 and 1.5 mg L−1) and fish fed for four weeks. We evaluated the fish growth performance, the hepatic DNA structure using comet assay, the expression of antioxidative genes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx and glutathione-S-transferase, GST) and GPx and GST enzymatic activity. The results showed that Zn exhibited more pronounced toxic effects than Cu. A low dose of Cu did not influence the growth whereas higher doses of Cu and Zn significantly reduced the growth rate of tilapia compared to the control, but the addition of duckweed prevented weight loss. Furthermore, in the presence of a high dose of Cu and Zn, DNA damage decreased, antioxidant gene expressions and enzymatic activities increased. In conclusion, the results suggest that duckweed and Nile tilapia can be suitable candidates in metal remediation wastewater assessment programs.


2020 ◽  
Vol 8 (7) ◽  
pp. 1040
Author(s):  
Negash Kabtimer Bereded ◽  
Manuel Curto ◽  
Konrad J. Domig ◽  
Getachew Beneberu Abebe ◽  
Solomon Workneh Fanta ◽  
...  

The Nile tilapia (Oreochromis niloticus) gut harbors a diverse microbial community; however, their variation across gut regions, lumen and mucosa is not fully elucidated. In this study, gut microbiota of all samples across gut regions and sample types (luminal content and mucosa) were analyzed and compared from two Ethiopian lakes. Microbiota were characterized using 16S rRNA Illumina MiSeq platform sequencing. A total of 2061 operational taxonomic units (OTUs) were obtained and the results indicated that Nile tilapia from Lake Chamo harbored a much more diversified gut microbiota than Lake Awassa. In addition, the gut microbiota diversity varied significantly across the gut region based on the Chao1, Shannon and Simpson index. The microbiome analyses of all samples in the midgut region showed significantly higher values for alpha diversity (Chao 1, Shannon and Simpson). Beta diversity analysis revealed a clear separation of samples according to sampling areas and gut regions. The most abundant genera were Clostridium_sensu_stricto and Clostridium_XI genera across all samples. Between the two sampling lakes, two phyla, Phylum Fusobacteria and Cyanobacteria, were found to be significantly different. On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and Cyanobacteria) were significantly different across gut regions. In this study, we found that all samples shared a large core microbiota, comprising a relatively large number of OTUs, which was dominated by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria. This study has established the bases for future large-scale investigations of gut microbiota of fishes in Ethiopian lakes.


Sign in / Sign up

Export Citation Format

Share Document