Three naturally occurring host defense peptides protect largemouth bass (Micropterus salmoides) against bacterial infections

Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737383
Author(s):  
Jianhong Ouyang ◽  
Yiyun Zhu ◽  
Weijing Hao ◽  
Xia Wang ◽  
Huaixin Yang ◽  
...  
2021 ◽  
Vol 22 (20) ◽  
pp. 11172
Author(s):  
Matthew Drayton ◽  
Julia P. Deisinger ◽  
Kevin C. Ludwig ◽  
Nigare Raheem ◽  
Anna Müller ◽  
...  

The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.


2014 ◽  
Vol 4 (4) ◽  
pp. 288-297
Author(s):  
LING Guiying ◽  
LI Li ◽  
GAO Jiuxiang ◽  
YU Haining ◽  
WANG Yipeng ◽  
...  

2017 ◽  
Vol 24 (7) ◽  
pp. 654-672 ◽  
Author(s):  
Malgorzata Anna Dawgul ◽  
Katarzyna E. Greber ◽  
Wieslaw Sawicki ◽  
Wojciech Kamysz

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Michael R. Yeaman ◽  
Liana C. Chan ◽  
Nagendra N. Mishra ◽  
Arnold S. Bayer

Streptococcus mitis-oralis (S. mitis-oralis) infections are increasingly prevalent in specific populations, including neutropenic cancer and endocarditis patients. S. mitis-oralis strains have a propensity to evolve rapid, high-level and durable resistance to daptomycin (DAP-R) in vitro and in vivo, although the mechanism(s) involved remain incompletely defined. We examined mechanisms of DAP-R versus cross-resistance to cationic host defense peptides (HDPs), using an isogenic S. mitis-oralis strain-pair: (i) DAP-susceptible (DAP-S) parental 351-WT (DAP MIC = 0.5 µg/mL), and its (ii) DAP-R variant 351-D10 (DAP MIC > 256 µg/mL). DAP binding was quantified by flow cytometry, in-parallel with temporal (1–4 h) killing by either DAP or comparative prototypic cationic HDPs (hNP-1; LL-37). Multicolor flow cytometry was used to determine kinetic cell responses associated with resistance or susceptibility to these molecules. While overall DAP binding was similar between strains, a significant subpopulation of 351-D10 cells hyper-accumulated DAP (>2–4-fold vs. 351-WT). Further, both DAP and hNP-1 induced cell membrane (CM) hyper-polarization in 351-WT, corresponding to significantly greater temporal DAP-killing (vs. 351-D10). No strain-specific differences in CM permeabilization, lipid turnover or regulated cell death were observed post-exposure to DAP, hNP-1 or LL-37. Thus, the adaptive energetics of the CM appear coupled to the outcomes of interactions of S. mitis-oralis with DAP and selected HDPs. In contrast, altered CM permeabilization, proposed as a major mechanism of action of both DAP and HDPs, did not differentiate DAP-S vs. DAP-R phenotypes in this S. mitis-oralis strain-pair.


RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19081-19084
Author(s):  
Andrea Valsesia ◽  
Patrizia Iavicoli ◽  
Helen Lewis ◽  
Cloé Desmet ◽  
Dora Mehn ◽  
...  

Nanomechanical monitoring of known mechanisms of membrane poration mediated by host defense peptides is reported.


Peptides ◽  
2013 ◽  
Vol 45 ◽  
pp. 1-8 ◽  
Author(s):  
Milena Mechkarska ◽  
Manju Prajeep ◽  
Jérôme Leprince ◽  
Hubert Vaudry ◽  
Mohammed A. Meetani ◽  
...  

1996 ◽  
Vol 14 (7) ◽  
pp. 804-804
Author(s):  
Robert L. Erwin

Peptides ◽  
2021 ◽  
pp. 170644
Author(s):  
Ernesto M. Martell ◽  
Melaine González ◽  
Ludger Ständker ◽  
Anselmo J. Otero-González

Sign in / Sign up

Export Citation Format

Share Document