scholarly journals Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro

2013 ◽  
Vol 132-133 ◽  
pp. 61-72 ◽  
Author(s):  
Pratap C. Naha ◽  
Hugh J. Byrne
2014 ◽  
Vol 26 (6) ◽  
pp. 797 ◽  
Author(s):  
Nathália A. S. Rocha-Frigoni ◽  
Beatriz C. S. Leão ◽  
Ériklis Nogueira ◽  
Mônica F. Accorsi ◽  
Gisele Z. Mingoti

The effects of intracellular (cysteine and β-mercaptoethanol) and extracellular (catalase) antioxidant supplementation at different times during in vitro production (IVM and/or in vitro culture (IVC)) on bovine embryo development, intracellular reactive oxygen species (ROS) levels, apoptosis and re-expansion rates after a vitrification–thawing process were examined. Blastocyst frequencies were not affected by either antioxidant supplementation (40.5%–56.4%) or the timing of supplementation (41.7%–55.4%) compared with control (48.7%; P > 0.05). Similarly, antioxidants and the moment of supplementation did not affect (P > 0.05) the total number of blastomeres (86.2–90.5 and 84.4–90.5, respectively) compared with control (85.7). However, the percentage of apoptotic cells was reduced (P < 0.05) in groups supplemented during IVM (1.7%), IVC (2.0%) or both (1.8%) compared with control (4.3%). Intracellular ROS levels measured in Day 7 blastocysts were reduced (P < 0.05) in all groups (0.60–0.78), with the exception of the group supplemented with β-mercaptoethanol during IVC (0.88), which did not differ (P > 0.05) from that in the control group (1.00). Re-expansion rates were not affected (P > 0.05) by the treatments (50.0%–93.0%). In conclusion, antioxidant supplementation during IVM and/or IVC reduces intracellular ROS and the rate of apoptosis; however, supplementation does not increase embryonic development and survival after vitrification.


Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 316 ◽  
Author(s):  
Wanchun Su ◽  
Lei Wang ◽  
Xiaoting Fu ◽  
Liying Ni ◽  
Delin Duan ◽  
...  

A fucose-rich fucoidan was purified from brown seaweed Saccharina japonica, of which the UVB protective effect was investigated in vitro in keratinocytes of HaCaT cells and in vivo in zebrafish. The intracellular reactive oxygen species levels and the viability of UVB-irradiated HaCaT cells were determined. The results indicate that the purified fucoidan significantly reduced the intracellular reactive oxygen species levels and improved the viability of UVB-irradiated HaCaT cells. Furthermore, the purified fucoidan remarkably decreased the apoptosis by regulating the expressions of Bax/Bcl-xL and cleaved caspase-3 in UVB-irradiated HaCaT cells in a dose-dependent manner. In addition, the in vivo UV protective effect of the purified fucoidan was investigated using a zebrafish model. It significantly reduced the intracellular reactive oxygen species level, the cell death, the NO production, and the lipid peroxidation in UVB-irradiated zebrafish in a dose-dependent manner. These results suggest that purified fucoidan has a great potential to be developed as a natural anti-UVB agent applied in the cosmetic industry.


2013 ◽  
Vol 57 (9) ◽  
pp. 4360-4368 ◽  
Author(s):  
Fazal Shirazi ◽  
Michael A. Pontikos ◽  
Thomas J. Walsh ◽  
Nathaniel Albert ◽  
Russell E. Lewis ◽  
...  

ABSTRACTThe high mortality rate of mucormycosis with currently available monotherapy has created interest in studying novel strategies for antifungal agents. With the exception of amphotericin B (AMB), the triazoles (posaconazole [PCZ] and itraconazole [ICZ]) are fungistaticin vitroagainstRhizopus oryzae. We hypothesized that growth at a high temperature (42°C) results in fungicidal activity of PCZ and ICZ that is mediated through apoptosis.R. oryzaehad high MIC values for PCZ and ICZ (16 to 64 μg/ml) at 25°C; in contrast, the MICs for PCZ and ICZ were significantly lower at 37°C (8 to 16 μg/ml) and 42°C (0.25 to 1 μg/ml). Furthermore, PCZ and ICZ dose-dependent inhibition of germination was more pronounced at 42°C than at 37°C. In addition, intracellular reactive oxygen species (ROS) increased significantly when fungi were exposed to antifungals at 42°C. Characteristic cellular changes of apoptosis inR. oryzaewere induced by the accumulation of intracellular reactive oxygen species. Cells treated with PCZ or ICZ in combination with hyperthermia (42°C) exhibited characteristic markers of early apoptosis: phosphatidylserine externalization visualized by annexin V staining, membrane depolarization visualized by bis-[1,3-dibutylbarbituric acid] trimethine oxonol (DiBAC) staining, and increased metacaspase activity. Moreover, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and DAPI (4′,6-diamidino-2-phenylindole) staining demonstrated DNA fragmentation and condensation, respectively. The addition ofN-acetylcysteine increased fungal survival, prevented apoptosis, reduced ROS accumulation, and decreased metacaspase activation. We concluded that hyperthermia, either alone or in the presence of PCZ or ICZ, induces apoptosis inR. oryzae. Local thermal delivery could be a therapeutically useful adjunct strategy for these refractory infections.


Sign in / Sign up

Export Citation Format

Share Document