Mesangial Cells Stimulated by Immunoglobin A1 from IgA Nephropathy Upregulates Transforming Growth Factor-β1 Synthesis in Podocytes Via Renin-Angiotensin System Activation

2010 ◽  
Vol 41 (4) ◽  
pp. 255-260 ◽  
Author(s):  
Cheng Wang ◽  
Xun Liu ◽  
Hui Peng ◽  
Ying Tang ◽  
Hua Tang ◽  
...  
2018 ◽  
Vol 19 (3) ◽  
pp. 147032031880300 ◽  
Author(s):  
Chung-Ming Chen ◽  
Shu-Hui Juan ◽  
Hsiu-Chu Chou

Introduction: The renin–angiotensin system and epithelial–mesenchymal transition play crucial roles in the development of kidney fibrosis. The connection between the renin–angiotensin system and transforming growth factor-β in epithelial–mesenchymal transition remains largely unknown. Materials and methods: We assessed oxidative stress, cytokine levels, renal morphology, profibrotic growth factor and renin–angiotensin system component expression, and cell-specific E- and N-cadherin expression in the kidneys of gerbils with streptozotocin-induced diabetes mellitus. Results: Animals in the experimental group received an intraperitoneal injection of streptozotocin to induce diabetes. The diabetic gerbil kidneys presented kidney injury, which was manifested as distorted glomeruli, necrosis of tubular cells, dilated tubular lumen, and brush border loss. Additionally, the diabetic gerbil kidneys exhibited significantly higher expressions of 8-hydroxy-2′-deoxyguanosine, nuclear factor-kB, toll-like receptor 4, tumor necrosis factor-α, transforming growth factor-β, connective tissue growth factor, α-smooth muscle actin, and N-cadherin and higher collagen deposition than did the control gerbil kidneys. Compared with the control kidneys, the diabetic gerbil kidneys exhibited significantly lower E-cadherin expression. These epithelial–mesenchymal transition characteristics were associated with an increase in renin–angiotensin system expression in the diabetic gerbils. Conclusions: We demonstrate that hyperglycemia activated the renin–angiotensin system, induced epithelial–mesenchymal transition, and contributed to kidney fibrosis in an experimental diabetes mellitus model.


2009 ◽  
Vol 296 (2) ◽  
pp. F257-F265 ◽  
Author(s):  
Lihua Shi ◽  
Dejan Nikolic ◽  
Shu Liu ◽  
Hong Lu ◽  
Shuxia Wang

Previously we demonstrated that upstream stimulatory factor 2 (USF2) transgenic (Tg) mice developed nephropathy including albuminuria and glomerular hypertrophy, accompanied by increased transforming growth factor (TGF)-β and fibronectin accumulation in the glomeruli. However, the mechanisms by which overexpression of USF2 induces kidney injury are unknown. USF has been shown to regulate renin expression. Moreover, the renin-angiotensin system (RAS) plays important roles in renal diseases. Therefore, in the present studies the effects of USF2 on the regulation of RAS in the kidney as well as in mesangial cells from USF2 (Tg) mice were examined. The role of USF2-mediated regulation of RAS in TGF-β production in mesangial cells was also determined. Our data demonstrate that USF2 (Tg) mice exhibit increased renin and angiotensin (ANG) II levels in the kidney. In contrast, renal expression of other components of RAS such as renin receptor, angiotensinogen, angiotensin-converting enzyme (ACE), ACE2, angiotensin type 1a (AT1a) receptor, and AT2 receptor was not altered in USF2 (Tg) mice. Similarly, mesangial cells isolated from USF2 (Tg) mice had increased renin and ANG II levels. Mesangial cells overexpressing USF2 also had increased TGF-β production, which was blocked by small interfering RNA-mediated renin gene knockdown or RAS blockade (enalapril or losartan). Collectively, these results suggest that USF2 promotes renal renin expression and stimulates ANG II generation, leading to activation of the intrarenal RAS. In addition, renin-dependent ANG II generation mediates the effect of USF2 on TGF-β production in mesangial cells, which may contribute to the development of nephropathy in USF2 (Tg) mice.


Sign in / Sign up

Export Citation Format

Share Document