Activation of renal renin-angiotensin system in upstream stimulatory factor 2 transgenic mice

2009 ◽  
Vol 296 (2) ◽  
pp. F257-F265 ◽  
Author(s):  
Lihua Shi ◽  
Dejan Nikolic ◽  
Shu Liu ◽  
Hong Lu ◽  
Shuxia Wang

Previously we demonstrated that upstream stimulatory factor 2 (USF2) transgenic (Tg) mice developed nephropathy including albuminuria and glomerular hypertrophy, accompanied by increased transforming growth factor (TGF)-β and fibronectin accumulation in the glomeruli. However, the mechanisms by which overexpression of USF2 induces kidney injury are unknown. USF has been shown to regulate renin expression. Moreover, the renin-angiotensin system (RAS) plays important roles in renal diseases. Therefore, in the present studies the effects of USF2 on the regulation of RAS in the kidney as well as in mesangial cells from USF2 (Tg) mice were examined. The role of USF2-mediated regulation of RAS in TGF-β production in mesangial cells was also determined. Our data demonstrate that USF2 (Tg) mice exhibit increased renin and angiotensin (ANG) II levels in the kidney. In contrast, renal expression of other components of RAS such as renin receptor, angiotensinogen, angiotensin-converting enzyme (ACE), ACE2, angiotensin type 1a (AT1a) receptor, and AT2 receptor was not altered in USF2 (Tg) mice. Similarly, mesangial cells isolated from USF2 (Tg) mice had increased renin and ANG II levels. Mesangial cells overexpressing USF2 also had increased TGF-β production, which was blocked by small interfering RNA-mediated renin gene knockdown or RAS blockade (enalapril or losartan). Collectively, these results suggest that USF2 promotes renal renin expression and stimulates ANG II generation, leading to activation of the intrarenal RAS. In addition, renin-dependent ANG II generation mediates the effect of USF2 on TGF-β production in mesangial cells, which may contribute to the development of nephropathy in USF2 (Tg) mice.

2008 ◽  
Vol 294 (4) ◽  
pp. H1675-H1684 ◽  
Author(s):  
Vivek P. Singh ◽  
Kenneth M. Baker ◽  
Rajesh Kumar

The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-β and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 886 ◽  
Author(s):  
Jan Wysocki ◽  
Arndt Schulze ◽  
Daniel Batlle

ACE2 is a monocarboxypeptidase which generates Angiotensin (1–7) from Angiotensin II (1–8). Attempts to target the kidney Renin Angiotensin System using native ACE2 to treat kidney disease are hampered by its large molecular size, 100 kDa, which precludes its glomerular filtration and subsequent tubular uptake. Here, we show that both urine and kidney lysates are capable of digesting native ACE2 into shorter proteins of ~60–75 kDa and then demonstrate that they are enzymatically very active. We then truncated the native ACE2 by design from the C-terminus to generate two short recombinant (r)ACE2 variants (1-605 and 1-619AA). These two truncates have a molecular size of ~70 kDa, as expected from the amino acid sequence and as shown by Western blot. ACE2 enzyme activity, measured using a specific substrate, was higher than that of the native rACE2 (1-740 AA). When infused to mice with genetic ACE2 deficiency, a single i.v. injection of 1-619 resulted in detectable ACE2 activity in urine, whereas infusion of the native ACE2 did not. Moreover, ACE2 activity was recovered in harvested kidneys from ACE2-deficient mice infused with 1-619, but not in controls (23.1 ± 4.3 RFU/µg creatinine/h and 1.96 ± 0.73 RFU/µg protein/hr, respectively). In addition, the kidneys of ACE2-null mice infused with 1-619 studied ex vivo formed more Ang (1–7) from exogenous Ang II than those infused with vehicle (AUC 8555 ± 1933 vs. 3439 ± 753 ng/mL, respectively, p < 0.05) further demonstrating the functional effect of increasing kidney ACE2 activity after the infusion of our short ACE2 1-619 variant. We conclude that our novel short recombinant ACE2 variants undergo glomerular filtration, which is associated with kidney uptake of enzymatically active proteins that can enhance the formation of Ang (1–7) from Ang II. These small ACE2 variants may offer a potentially useful approach to target kidney RAS overactivity to combat kidney injury.


2007 ◽  
Vol 293 (1) ◽  
pp. F398-F407 ◽  
Author(s):  
Juan Carlos Q. Velez ◽  
Alison M. Bland ◽  
John M. Arthur ◽  
John R. Raymond ◽  
Michael G. Janech

Intraglomerular ANG II has been linked to glomerular injury. However, little is known about the contribution of podocytes (POD) to intraglomerular ANG II homeostasis. The aim of the present study was to examine the processing of angiotensin substrates by cultured POD. Our approach was to use matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for peptide determination from conditioned cell media and customized AQUA peptides for quantification. Immortalized mouse POD were incubated with 1-2 μM ANG I, ANG II, or the renin substrate ANG-(1-14) for different time intervals and coincubated in parallel with various inhibitors. Human mesangial cells (MES) were used as controls. POD incubated with 1 μM ANG I primarily formed ANG-(1-9) and ANG-(1-7). In contrast, MES incubated with ANG I primarily generated ANG II. In POD, ANG-(1-7) was the predominant product, and its formation was inhibited by a neprilysin inhibitor. Modest angiotensin-converting enzyme (ACE) activity was also detected in POD, although only after cells were incubated with 2 μM ANG I. In addition, we observed that POD degraded ANG II into ANG III and ANG-(1-7). An aminopeptidase A inhibitor inhibited ANG III formation, and an ACE2 inhibitor led to ANG II accumulation. Furthermore, we found that POD converted ANG-(1-14) to ANG I and ANG-(1-7). This conversion was inhibited by a renin inhibitor. These findings demonstrate that POD express a functional intrinsic renin-angiotensin system characterized by neprilysin, aminopeptidase A, ACE2, and renin activities, which predominantly lead to ANG-(1-7) and ANG-(1-9) formation, as well as ANG II degradation. These findings may reflect a specific role of POD in maintenance of intraglomerular renin-angiotensin system balance.


2017 ◽  
Vol 312 (5) ◽  
pp. H968-H979 ◽  
Author(s):  
Neeru M. Sharma ◽  
Shyam S. Nandi ◽  
Hong Zheng ◽  
Paras K. Mishra ◽  
Kaushik P. Patel

An activated renin-angiotensin system (RAS) within the central nervous system has been implicated in sympathoexcitation during various disease conditions including congestive heart failure (CHF). In particular, activation of the RAS in the paraventricular nucleus (PVN) of the hypothalamus has been recognized to augment sympathoexcitation in CHF. We observed a 2.6-fold increase in angiotensinogen (AGT) in the PVN of CHF. To elucidate the molecular mechanism for increased expression of AGT, we performed in silico analysis of the 3′-untranslated region (3′-UTR) of AGT and found a potential binding site for microRNA (miR)-133a. We hypothesized that decreased miR-133a might contribute to increased AGT in the PVN of CHF rats. Overexpression of miR-133a in NG108 cells resulted in 1.4- and 1.5-fold decreases in AGT and angiotensin type II (ANG II) type 1 receptor (AT1R) mRNA levels, respectively. A luciferase reporter assay performed on NG108 cells confirmed miR-133a binding to the 3′-UTR of AGT. Consistent with these in vitro data, we observed a 1.9-fold decrease in miR-133a expression with a concomitant increase in AGT and AT1R expression within the PVN of CHF rats. Furthermore, restoring the levels of miR-133a within the PVN of CHF rats with viral transduction resulted in a significant reduction of AGT (1.4-fold) and AT1R (1.5-fold) levels with a concomitant decrease in basal renal sympathetic nerve activity (RSNA). Restoration of miR-133a also abrogated the enhanced RSNA responses to microinjected ANG II within the PVN of CHF rats. These results reveal a novel and potentially unique role for miR-133a in the regulation of ANG II within the PVN of CHF rats, which may potentially contribute to the commonly observed sympathoexcitation in CHF. NEW & NOTEWORTHY Angiotensinogen (AGT) expression is upregulated in the paraventricular nucleus of the hypothalamus through posttranscriptional mechanism interceded by microRNA-133a in heart failure. Understanding the mechanism of increased expression of AGT in pathological conditions leading to increased sympathoexcitation may provide the basis for the possible development of new therapeutic agents with enhanced specificity.


Author(s):  
Jieqiong Wang ◽  
Huiying Zhao ◽  
Youzhong An

Angiotensin converting enzyme 2 (ACE2), a transmembrane glycoprotein, is an important part of the renin-angiotensin system (RAS). In the COVID-19 epidemic, it was found to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). ACE2 maintains homeostasis by inhibiting the Ang II-AT1R axis and activating the Ang I (1-7)-MasR axis, protecting against lung, heart and kidney injury. In addition, ACE2 helps transport amino acids across the membrane. ACE2 sheds from the membrane, producing soluble ACE2 (sACE2). Previous studies have pointed out that sACE2 plays a role in the pathology of the disease, but the underlying mechanism is not yet clear. Recent studies have confirmed that sACE2 can also act as the receptor of SARS-COV-2, mediating viral entry into the cell and then spreading to the infective area. Elevated concentrations of sACE2 are more related to disease. Recombinant human ACE2, an exogenous soluble ACE2, can be used to supplement endogenous ACE2. It may represent a potent COVID-19 treatment in the future. However, the specific administration concentration needs to be further investigated.


2020 ◽  
Vol 71 (6) ◽  
pp. 307-311
Author(s):  
Sorin Ungurianu ◽  
Constantin Trus ◽  
Roxana-Rosmary Enciu

It is already known from a variety of previous reports that an independent brain renin�angiotensin system (RAS) exists, completely separated from the one in the periphery. This independent brain RAS has all the precursors and the enzymatic structures necessary for the generation of the angiotensin peptides. Thus, in the last few years various groups started focusing on the more central effects of less known angiotensins (e.g in comparison with Angiotensin (Ang) II), namely Ang III, Ang IV, Ang-(1�7) or Ang 5-8. One of these newly emerging angiotensins which has become an increased center of interest in many studies is Ang-(1-7), which is a heptapeptide previously described especially for its opposite effects to Ang II, in the peripheral vascular area, but also described for some opposite central functions vs. Ang II. These aspects are completed with the fact that it was recently suggested that the renin�angiotensin system could modulate the oxidative stress metabolism, and also it seems that the manifestations of Angiotensin-(1-7) on the basal oxidative stress status are contradictory, with a variety of reports describing controversial (e.g. both pro-oxidant and antioxidant actions) effects for this heptapeptide. Our results presented here are confirming a possible antioxidant effect of Ang-(1�7) administration on rat, as shown by the increased levels of antioxidant enzymes from the temporal lobe (superoxide dismutase and glutathione peroxidase) and decreased levels of malondialdehyde, as an important lipid peroxidation parameter.


Sign in / Sign up

Export Citation Format

Share Document