Impairment in Immunomodulatory Function of Mesenchymal Stem Cells from Multiple Myeloma Patients

2010 ◽  
Vol 41 (8) ◽  
pp. 623-633 ◽  
Author(s):  
Bingzong Li ◽  
Jinxing Fu ◽  
Ping Chen ◽  
Wenzhuo Zhuang
2017 ◽  
Vol 60 ◽  
pp. 82-88 ◽  
Author(s):  
HongLiang Yang ◽  
YingChun Zheng ◽  
YiZhuo Zhang ◽  
Zeng Cao ◽  
Yingzhe Jiang

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Kisha Nandini Sivanathan ◽  
Darling Rojas-Canales ◽  
Shane T. Grey ◽  
Stan Gronthos ◽  
Patrick T. Coates

Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γtreated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γand UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γwere enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γimmunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.


2018 ◽  
Vol 27 (9) ◽  
pp. 1340-1351 ◽  
Author(s):  
Dan Wang ◽  
Yue-Qi Sun ◽  
Wen-Xiang Gao ◽  
Xing-Liang Fan ◽  
Jian-Bo Shi ◽  
...  

Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) represent a promising cell source for patient-specific cell therapy. We previously demonstrated that they display an immunomodulatory effect on allergic airway inflammation. Glucocorticoids are powerful anti-inflammatory compounds and widely used in the therapy of allergic diseases. However, the effect of glucocorticoids on the immunomodulatory function of iPSC-MSCs remains unknown. This study aimed to determine the effect of dexamethasone (Dex) on the immunomodulatory function of iPSC-MSCs in vitro and in vivo. A total of three human iPSC-MSC clones were generated from amniocyte-derived iPSCs. Anti-CD3/CD28-induced peripheral blood mononuclear cell (PBMC) proliferation was used to assess the effect of Dex on the immunoinhibitory function of iPSC-MSCs in vitro. Mouse models of contact hypersensitivity (CHS) and allergic airway inflammation were induced, and the levels of inflammation in mice were analyzed with the treatments of iPSC-MSCs and Dex, alone and combined. The results showed that Dex did not interfere with the immunoinhibitory effect of iPSC-MSCs on PBMC proliferation. In CHS mice, simultaneous treatment with Dex did not affect the effect of iPSC-MSCs on the inflammation, both in regional draining lymph nodes and in inflamed ear tissue. In addition, co-administration of iPSC-MSCs with Dex decreased the local expression of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the ears of CHS mice. In the mouse model of allergic airway inflammation, iPSC-MSC treatment combined with Dex resulted in a similar extent of reduction in pulmonary inflammation as iPSC-MSCs or Dex treatment alone. In conclusion, Dex does not significantly affect the immunomodulatory function of iPSC-MSCs both in vitro and in vivo. These findings may have implications when iPSC-MSCs and glucocorticoids are co-administered.


2006 ◽  
Vol 176 (5) ◽  
pp. 2864-2871 ◽  
Author(s):  
Hua Liu ◽  
David Michael Kemeny ◽  
Boon Chin Heng ◽  
Hong Wei Ouyang ◽  
Alirio J. Melendez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document