Granulocyte-like Myeloid Derived Suppressor Cells (G-MDSCs) are increased in Multiple Myeloma due to immunological dysregulation of mesenchymal stem cells (MSCs)

2015 ◽  
Vol 15 ◽  
pp. e211 ◽  
Author(s):  
C. Giallongo ◽  
N. Parrinello ◽  
D. Tibullo ◽  
P. La Cava ◽  
C. Conticello ◽  
...  
Oncotarget ◽  
2016 ◽  
Vol 7 (52) ◽  
pp. 85764-85775 ◽  
Author(s):  
Cesarina Giallongo ◽  
Daniele Tibullo ◽  
Nunziatina L. Parrinello ◽  
Piera La Cava ◽  
Michelino Di Rosa ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Irina Lyadova Vladimirovna ◽  
Ekaterina Sosunova ◽  
Alexander Nikolaev ◽  
Tatiana Nenasheva

To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fatih M. Uckun

Here we review the insights and lessons learned from early clinical trials of T-cell engaging bispecific antibodies (BsABs) as a new class of biotherapeutic drug candidates with clinical impact potential for the treatment of multiple myeloma (MM). BsABs are capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant MM clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC). T-cell engaging BsAB targeting the BCMA antigen may help delay disease progression in MM by destroying the MM cells. T-cell engaging BsAB targeting the CD38 antigen may help delay disease progression in MM by depleting both the malignant MM clones and the MDSC in the bone marrow microenvironment (BMME). BsABs may facilitate the development of a new therapeutic paradigm for achieving improved survival in MM by altering the immunosuppressive BMME. T-cell engaging BsiABs targeting the CD123 antigen may help delay disease progression in MM by depleting the MDSC in the BMME and destroying the MM stem cells that also carry the CD123 antigen on their surface.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4018-4018
Author(s):  
Cesarina Giallongo ◽  
Nunziatina L Parrinello ◽  
Daniele Tibullo ◽  
Claudia Bellofiore ◽  
Piera La Cava ◽  
...  

Abstract INTRODUCTION. The complex interplay between cancer cells and immune system allows neoplastic cells to evade immune surveillance and expand. Recently, our and another group have demonstrated that a subpopulation of myeloid cells, defined as "granulocytic myeloid-derived suppressor cells" (G-MDSC), plays an important role for immune escape in chronic myeloid leukemia (CML) patients by reducing T cell activation. The aim of this study was to evaluate the influence of Mesenchymal stem cells (MSC) on generation of MDSCs by comparing CML MSCs (n=10) with healthy donors (HD) MSC (n=8). METHODS. G-MDSC (CD11b+CD33+CD14-HLADR- cells) were analyzed in peripheral blood (PB) of 20 healthy donors (HD) and 30 CML patients at diagnosis by cytofluorimetric analysis. Immuno-suppressive activity was tested through incubation of G-MDSC with autologous CFSE-labeled T cells and stimulation with phytohaemagglutinin (PHA). Controls included a positive T cell proliferation control (T cells plus PHA) and a negative one (T cells only). After three days, T cell proliferation was analyzed by flow cytometry. For G-MDSC generation, human peripheral blood mononucleated cells (PBMC) from HD were cultured alone and with MSC of CML (n=10) or HD (n=8) (1:100 ratio). After one week, G-MDSC were isolated using anti-CD66b magnetic microbeads and the phenotype was confirmed by cytofluorimetric analysis. Expression of ARG1, NOS2, PTGS2, TNFα, TGFβ, IL6, IL10, IL1β was also evaluated using real time PCR. RESULTS. Percentage of cells with a G-MDSC phenotype was greater in PB obtained from CML patients than HD (82.5±9.6% vs 56,2±5.4%, p<0.0001). G-MDSC were able to inhibit T cell proliferation compared to positive control (25±5% vs 48±7.6%, p=0.0057). To investigate if CML MSC may be involved in G-MDSC generation, we incubated HD PBMC with CML or HD MSC for one week. After magnetic isolation, we found that only CML MSC-educated G-MDSC acquired immune-suppressive ability, inhibiting T cell proliferation compared to G-MDSCs control (isolated from PBMC cultured in medium alone) (32±12% vs 63±5.9%, p=0.003). On the contrary, HD MSC-educated G-MDSC did not show any suppressive effect. We also found that CML MSC-educated G-MDSC expressed higher level of the following immune modulatory factors: TNFα (20.8±19.3, p=0.006), IL1β (47.3±25.2, p=0.001), PTGS2 (20.7±10.9, p=0.002) and IL6 (33.8±13.9, p=0.004) compared to HD MSC-educated G-MDSCs (arbitrarily 2-ΔΔCt value: 1). MSC WE also observed ane an up-regulation of PTGS2 (19±4.4, p=0.04), TGFβ (6±3, p=0.01) and IL6 (5±2.8, p=0.04) in CML MSCs at time 0 with a great variability among the patients (calculated value of 2-ΔΔCt in HD MSC was 1). After 48 h of co-culture with PBMC, CML MSC showed statistically significant up-regulation of ARG1 (23.5±11.9, p=0.02), TGFβ (4.8±3, p=0.04), IL10 (5.6±2.8, p=0.03) and IL6 (54.3±23, p=0.02) expression, suggesting that multiple mechanisms are involved in MDSC induction by CML MSC. CONCLUSION. Our work demonstrates that CML MSCs are able to activate MDSCs favoring cancer immune evasion in CML patients. Disclosures Palumbo: Novartis: Honoraria, Other: Advisory Board.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158392 ◽  
Author(s):  
Cesarina Giallongo ◽  
Alessandra Romano ◽  
Nunziatina Laura Parrinello ◽  
Piera La Cava ◽  
Maria Violetta Brundo ◽  
...  

2017 ◽  
Vol 263 ◽  
pp. e60
Author(s):  
Tae -Hoon Kim ◽  
Kwonyoon Kang ◽  
Eun Min Kim ◽  
Hyo Eun Park ◽  
Eun Hye Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document