osteogenic cells
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 46)

H-INDEX

43
(FIVE YEARS 4)

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Viveka Nand Malviya ◽  
Ahmed Bulldan ◽  
Raffael Christoph Wende ◽  
Hassan Kabbesh ◽  
Marie-Louise Möller ◽  
...  

ZIP9 is a recently identified membrane-bound androgen receptor of physiological significance that may mediate certain physiological responses to androgens. Using in silico methods, six tetrapeptides with the best docking properties at the testosterone binding site of ZIP9 were synthesized and further investigated. All tetrapeptides displaced T-BSA-FITC, a membrane-impermeable testosterone analog, from the surface of mouse myogenic L6 cells that express ZIP9 but not the classical androgen receptor (AR). Silencing the expression of ZIP9 with siRNA prevented this labeling. All tetrapeptides were found to be pro-androgenic; in L6 cells they stimulated the expression of myogenin, triggered activation of focal adhesion kinase, and prompted the fusion of L6 myocytes to syncytial myotubes. In human osteoblastic SAOS-2 cells that express AR and ZIP9, they reduced the expression of alkaline phosphatase and stimulated mineralization. These latter effects were prevented by silencing ZIP9 expression, indicating that the osteoblast/osteocyte conversion is exclusively mediated through ZIP9. Our results demonstrate that the synthetic tetrapeptides, by acting as ZIP9-specific androgens, have the potential to replace testosterone or testosterone analogs in the treatment of bone- or muscle-related disorders by circumventing the undesirable effects mediated through the classical AR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Greg Holmes ◽  
Ana S. Gonzalez-Reiche ◽  
Madrikha Saturne ◽  
Susan M. Motch Perrine ◽  
Xianxiao Zhou ◽  
...  

AbstractCraniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip−/− coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.


2021 ◽  
Vol 22 (19) ◽  
pp. 10414
Author(s):  
Leszek Borkowski ◽  
Agata Przekora ◽  
Anna Belcarz ◽  
Krzysztof Palka ◽  
Mariusz Jojczuk ◽  
...  

A novel fluorapatite/glucan composite (“FAP/glucan”) was developed for the treatment of bone defects. Due to the presence of polysaccharide polymer (β-1,3-glucan), the composite is highly flexible and thus very convenient for surgery. Its physicochemical and microstructural properties were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mercury intrusion, mechanical testing and compared with the reference material, which was a hydroxyapatite/glucan composite (“HAP/glucan”) with hydroxyapatite granules (HAP) instead of FAP. It was found that FAP/glucan has a higher density and lower porosity than the reference material. The correlation between the Young’s modulus and the compressive strength between the materials is different in a dry and wet state. Bioactivity assessment showed a lower ability to form apatite and lower uptake of apatite-forming ions from the simulated body fluid by FAP/glucan material in comparison to the reference material. Moreover, FAP/glucan was determined to be of optimal fluoride release capacity for osteoblasts growth requirements. The results of cell culture experiments showed that fluoride-containing biomaterial was non-toxic, enhanced the synthesis of osteocalcin and stimulated the adhesion of osteogenic cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alex M. Hollenberg ◽  
Aric Huber ◽  
Charles O. Smith ◽  
Roman A. Eliseev

AbstractBone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Endocrine ◽  
2021 ◽  
Author(s):  
Miriam E. A. Tschaffon ◽  
Stefan O. Reber ◽  
Astrid Schoppa ◽  
Sayantan Nandi ◽  
Ion C. Cirstea ◽  
...  

Abstract Purpose Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage. Methods Murine chondrogenic ATDC5 cells were differentiated into the chondrogenic lineage for seven days and subsequently differentiated towards the osteogenic direction. Gene expression analysis of pluripotency, as well as chondrogenic and osteogenic markers, cell–matrix staining, and immunofluorescent staining, were performed to assess the differentiation. In addition, the effects of Wnt3a and lipopolysaccharides (LPS) on the transdifferentiation were tested by their addition to the osteogenic differentiation medium. Results Following osteogenic differentiation, chondrogenically pe-differentiated cells displayed the expression of pluripotency and osteogenic marker genes as well as alkaline phosphatase activity and a mineralized matrix. Co-expression of Col2a1 and Col1a1 after one day of osteogenic differentiation indicated that osteogenic cells had differentiated from chondrogenic cells. Wnt3a increased and LPS decreased transdifferentiation towards the osteogenic lineage. Conclusion We successfully established a rapid, standardized in vitro assay for the transdifferentiation of chondrogenic cells into osteogenic cells, which is suitable for testing the effects of different compounds on this cellular process.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1139
Author(s):  
Sunghyun Park ◽  
Alvin Bello ◽  
Yoshie Arai ◽  
Jinsung Ahn ◽  
Dohyun Kim ◽  
...  

Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2457
Author(s):  
Thaise C. Geremias ◽  
Suelen C. Sartoretto ◽  
Marcos A. Batistella ◽  
Antônio A. Ulson de Souza ◽  
Adriana T. N. N. Alves ◽  
...  

Guided bone regeneration involves excluding non-osteogenic cells from the surrounding soft tissues and allowing osteogenic cells originating from native bone to inhabit the defect. The aim of this work was to fabricate, analyze antibiofilm activity and evaluate in vivo biological response of poly (lactic-co-glycolic acid) (PLGA) electrospun membranes incorporated with tea tree oil and furan-2(5H)-one. Samples were exposed to Streptococcus mutans culture and after 48 h incubation, biofilm was evaluated by colony forming units (CFU/mL) followed by scanning electron microscopy. Additionally, seventy-five Balb-C mice were divided into five experimental groups for subcutaneous implantation: tea tree oil loaded PLGA electrospun fiber membrane, furanone loaded PLGA electrospun fiber membrane, neat PLGA electrospun fiber membrane, a commercially available PLGA membrane –Pratix® and Sham (no-membrane implantation). Post implantation period of each experimental group (1, 3 and 9 weeks), samples were collected and processed for by histological descriptive and semiquantitative evaluation. Results showed a significant reduction of bacterial attachment on tea tree oil and furan-2(5H)-one incorporated membranes. Macrophage counts were significant found in all the materials implanted, although giant cells were predominantly associated with electrospun fiber membranes. The incorporation of antibiofilm compounds in nanofibers membranes did not incite inflammatory response significantly different in comparison with pure PLGA electrospun membranes, indicating its potential for development of novel functionalized membranes targeting the inhibition of bacterial biofilms on membrane-grafting materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3280
Author(s):  
Jun-Young Lee ◽  
Jin-Young Park ◽  
In-Pyo Hong ◽  
Su-Hee Jeon ◽  
Jae-Kook Cha ◽  
...  

Background: Polycarprolactone and beta tricalcium phosphate (PCL/β-TCP) are resorbable biomaterials that exhibit ideal mechanical properties as well as high affinity for osteogenic cells. Aim: Objective of this study was to evaluate healing and tissue reaction to the PCL/β-TCP barrier membrane in the rabbit calvaria model for guided bone regeneration. Materials and Methods: The PCL/β-TCP membranes were 3D printed. Three circular defects were created in calvaria of 10 rabbits. The three groups were randomly allocated for each specimen: (i) sham control; (ii) PCL/β-TCP membrane (PCL group); and (iii) PCL/β-TCP membrane with synthetic bone graft (PCL-BG group). The animals were euthanized after two (n = 5) and eight weeks (n = 5) for volumetric and histomorphometric analyses. Results: The greatest augmented volume was achieved by the PCL-BG group at both two and eight weeks (p < 0.01). There was a significant increase in new bone after eight weeks in the PCL group (p = 0.04). The PCL/β-TCP membrane remained intact after eight weeks with slight degradation, and showed good tissue integration. Conclusions: PCL/β-TCP membrane exhibited good biocompatibility, slow degradation, and ability to maintain space over eight weeks. The 3D-printed PCL/β-TCP membrane is a promising biomaterial that could be utilized for reconstruction of critical sized defects.


Aging ◽  
2021 ◽  
Author(s):  
Jirui Wen ◽  
Mingyue Bao ◽  
Min Tang ◽  
Xueling He ◽  
Xinghong Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document