indoleamine 2
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 68)

H-INDEX

21
(FIVE YEARS 6)

2022 ◽  
Vol 10 (A) ◽  
pp. 6-11
Author(s):  
Yan Wisnu Prajoko ◽  
Agung Putra ◽  
Bayu Tirta Dirja ◽  
Adi Muradi Muhar ◽  
Nur Dina Amalina

BACKGROUND: Mesenchymal stem cells (MSCs) have potent immunosuppressive properties to control systemic lupus erythematosus (SLE) disease by releasing several anti-inflammatory molecules, particularly indoleamine 2, 3-dioxygenase (IDO), and increasing regulatory T cells (Treg) to control innate and adaptive immune cells. However, how MSCs release IDO to modulate Treg in controlling B is poorly understood. Therefore, investigating IDO, Treg, and B cells following MSC administration in SLE is needed. AIM: This study aimed to investigate the ameliorating effects of MSCs in controlling B cells mediated by an increase of IDO-induced Treg in PBMC of SLE patients. METHODS: This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups: Sham (placebo group), control, and three treatment groups. The treatment groups were treated by coculturing MSCs to PBMCs with a ratio of 1:10, 1:25, and 1:40 for 72 h incubation. Treg and B-cell levels were analyzed by flow cytometry with cytometric bead array (CBA) while the IDO levels were determined by ELISA. RESULTS: This study showed that the percentages of B cells decreased significantly in groups treated by dose-dependent MSCs, particularly in T1 and T2 groups followed by increased Treg cell percentages. These findings were aligned with the significant increase of the IDO levels. CONCLUSIONS: MSCs regulated B cells through an increase of IDO-induced Treg in SLE patients’ PBMC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Murad Alahdal ◽  
Rongxiang Huang ◽  
Li Duan ◽  
Deng Zhiqin ◽  
Ouyang Hongwei ◽  
...  

Osteoarthritis (OA) is a serious joint inflammation that leads to cartilage degeneration and joint dysfunction. Mesenchymal stem cells (MSCs) are used as a cell-based therapy that showed promising results in promoting cartilage repair. However, recent studies and clinical trials explored unsatisfied outcomes because of slow chondrogenic differentiation and increased calcification without clear reasons. Here, we report that the overexpression of indoleamine 2,3 dioxygenase 1 (IDO1) in the synovial fluid of OA patients impairs chondrogenic differentiation of MSCs in the joint of the OA mice model. The effect of MSCs mixed with IDO1 inhibitor on the cartilage regeneration was tested compared to MSCs mixed with IDO1 in the OA animal model. Further, the mechanism exploring the effect of IDO1 on chondrogenic differentiation was investigated. Subsequently, miRNA transcriptome sequencing was performed for MSCs cocultured with IDO1, and then TargetScan was used to verify the target of miR-122-5p in the SF-MSCs. Interestingly, we found that MSCs mixed with IDO1 inhibitor showed a significant performance to promote cartilage regeneration in the OA animal model, while MSCs mixed with IDO1 failed to stimulate cartilage regeneration. Importantly, the overexpression of IDO1 showed significant inhibition to Sox9 and Collagen type II (COL2A1) through activating the expression of β-catenin, since inhibiting of IDO1 significantly promoted chondrogenic signaling of MSCs (Sox9, COL2A1, Aggrecan). Further, miRNA transcriptome sequencing of SF-MSCs that treated with IDO1 showed significant downregulation of miR-122-5p which perfectly targets Wnt1. The expression of Wnt1 was noticed high when IDO1 was overexpressed. In summary, our results suggest that IDO1 overexpression in the synovial fluid of OA patients impairs chondrogenic differentiation of MSCs and cartilage regeneration through downregulation of miR-122-5p that activates the Wnt1/β-catenin pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Zhang ◽  
Han Shi ◽  
Ge Yang ◽  
Yongfeng Yang ◽  
Wenqiang Li ◽  
...  

AbstractThe indoleamine 2,3-dioxygenase (IDO) enzyme is the first rate-limiting enzyme of the tryptophan degradation pathway in which dysfunction of neuroactive metabolites has been implicated in the pathophysiology of schizophrenia. Inflammatory molecules such as pro-inflammatory cytokines could enhance the activity of IDO. There are few studies on the expression of IDO levels and its correlation with levels of inflammatory cytokines in first-episode drug-naive patients with schizophrenia. One hundred inpatients (female = 33, male = 67) with first-episode drug-naive schizophrenia entered a 6-week, double-blind, randomized, placebo-controlled clinical trial. All individuals were assigned celecoxib or placebo combined with risperidone. Serum levels of IDO and six inflammatory cytokines (IL-1β, IL-6, TNF-α IL-17, IL-4, and INF-γ) were measured. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of psychotic symptoms. Compared to healthy subjects, patients had significantly elevated levels of IDO and six cytokines at baseline. Over the 6-week treatment period, the decrease in the levels of IDO and TNF-α and the improvement in the PANSS total score, positive scores, and negative scores in the celecoxib group were significantly greater than in the placebo group. There was a significantly positive correlation between IDO levels and the PANSS negative scores and between IDO levels and TNF-α and IFN-γ levels in the celecoxib group. These findings showed abnormal expression of IDO levels which correlated with negative symptoms and pro-inflammatory cytokine levels in patients with first-episode drug-naive schizophrenia, suggesting the important role of IDO in the pathological mechanism of schizophrenia. Registration number: ChiCTR2000041403.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sultan Tousif ◽  
Yong Wang ◽  
Joshua Jackson ◽  
Kenneth P. Hough ◽  
John G. Strenkowski ◽  
...  

Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1488
Author(s):  
Stefania Farcomeni ◽  
Sonia Moretti ◽  
Caterina Fimiani ◽  
Lucia Fontanelli Sulekova ◽  
Fenicia Vescio ◽  
...  

Background: Direct-acting antivirals (DAAs) treatment, although highly efficacious for the treatment of hepatitis C virus (HCV) infection, may not completely reconstitute the HCV-mediated dysregulated immune system, especially in patients co-infected with human immunodeficiency virus (HIV) and HCV. Objectives: We aimed to evaluate the impact of HCV eradication following DAA therapy on the immune system and liver disease improvement through comparative monitoring of 10 HCV mono-infected and 10 HCV/HIV co-infected patients under combined antiretroviral therapy (cART). Early and late longitudinal phenotypic changes in peripheral blood mononuclear cell (PBMC) subsets, T-cell activation, differentiation and exhaustion, as well as inflammatory biomarkers, indoleamine 2-3 dioxygenase (IDO) activity, and liver stiffness, APRI and FIB-4 scores were assessed. Materials and Methods: Samples were obtained at baseline (T0), week 1 (T1), week 2 (T2), week 12 (T3, end of treatment, EOT), and month 9 (T4, end of follow-up, 36 weeks post EOT). Results: All patients achieved a sustained virological response (SVR 12) after DAA treatment. Overall, changes of the T-cell immune phenotypes were greater in HCV/HIV co-infected than in HCV mono-infected, due to an increase in CD4+ and CD8+ T-cell percentages and of CD8+ T-cell activation and memory markers, in particular at the end of follow-up. On the other end, HCV mono-infected showed changes in the activation profile and in the memory CD4+ T-cell compartment. In HCV/HIV co-infected, a decrease in the IDO activity by DAA treatment was observed; conversely, in HCV mono-infected, it resulted unmodified. Regarding inflammatory mediators, viral suppression was associated with a reduction in IP-10 levels, while interferon regulatory factor (IRF)-7, interferon (IFN)-β, and interferon (IFN)-γ levels were downregulated during therapy and increased post therapy. A decrease in liver stiffness, APRI, and FIB-4 scores was also observed. Conclusions: Our study suggests that, although patients achieved HCV eradication, the immune activation state in both HCV mono-infected and HCV/HIV co-infected patients remains elevated for a long time after the end of DAA therapy, despite an improvement of liver-specific outcomes, meanwhile highlighting the distinct immunophenotypic and inflammatory biomarker profile between the groups of patients.


Sign in / Sign up

Export Citation Format

Share Document