scholarly journals Comparison of Four Cartilage Repair Techniques in the Human Cadaveric Hip Joint: A Biomechanical Study

2013 ◽  
Vol 29 (10) ◽  
pp. e121-e122
Author(s):  
Adrian J. Cassar Gheiti ◽  
Damien P. Byrne ◽  
Kevin James Mulhall
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ashvin K. Dewan ◽  
Matthew A. Gibson ◽  
Jennifer H. Elisseeff ◽  
Michael E. Trice

Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques.Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks.Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue.Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.


Foot & Ankle ◽  
1988 ◽  
Vol 8 (5) ◽  
pp. 254-263 ◽  
Author(s):  
F. J. Bejjani ◽  
N. Halpern ◽  
A. Pio ◽  
R. Dominguez ◽  
A. Voloshin ◽  
...  

The flamenco dancer acts on the floor like a drummer. The percussive footwork and vibration patterns created during dancing impose unusual demands on the musculoskeletal system. This study investigated the clinical and biomechanical aspects of this task. Using the electrodynogram and skin-mounted accelerometers, foot pressures as well as hip and knee vibrations were recorded in 10 female dancers after a thorough clinical evaluation. A health questionnaire was also distributed to 29 dancers. Foot pressures and acceleration data reveal the percussive nature of the dance. Some clinical findings, like calluses, are related to pressure distribution. Urogenital disorders, as well as back and neck pain, may be related to the vibrations generated by the flamenco dance form. The hip joint seems to absorb most of the impacts. “Vibration-pressure” diagrams are suggested as a useful tool for evaluating a dancer's biomechanical behavior, as well as the effect of floors and footwear on this behavior.


2005 ◽  
Vol 87-B (4) ◽  
pp. 445-449 ◽  
Author(s):  
G. D. Smith ◽  
G. Knutsen ◽  
J. B. Richardson

2018 ◽  
Vol 6 (4) ◽  
pp. 232596711876808 ◽  
Author(s):  
Zachary C. Stender ◽  
Allison M. Cracchiolo ◽  
Michael P. Walsh ◽  
David P. Patterson ◽  
Matthew J. Wilusz ◽  
...  

Background: A common treatment for radial tears of the meniscus has historically been partial meniscectomy. Owing to the poor outcomes associated with partial meniscectomy, repair of the meniscus is an important treatment option. It is important to evaluate different repair techniques for radial tears of the meniscus. Purpose/Hypothesis: The purpose of this study was to evaluate 2 novel techniques to repair radial tears of the lateral meniscus. The 2 techniques were compared biomechanically with the cross-suture method with an inside-out technique. The authors hypothesized that novel repair techniques would result in less displacement after cyclic loading, increased load required to displace the repair 3 mm, greater load to failure, decreased displacement at load to failure, and increased stiffness of the repair, resulting in a construct that more closely re-creates the function of the intact meniscus. Study Design: Controlled laboratory study. Methods: A total of 36 fresh-frozen cadaveric tibial plateaus containing intact menisci were obtained. The menisci were divided into 3 groups (n = 12 in each group), and each meniscus was repaired simulating an inside-out technique. The 3 repairs completed were the hashtag, crosstag, and cross-suture techniques. Radial tears were created at the midbody of the lateral meniscus and repaired via the 3 techniques. The repaired menisci were attached to an axial loading machine and tested for cyclic and failure loading. Results: After cyclic loading, the cross-suture repair displaced 4.78 ± 1.65 mm; the hashtag, 2.42 ± 1.13 mm; and the crosstag, 3.13 ± 1.77 mm. The hashtag and cross-tag repairs both resulted in significantly less displacement ( P = .003 and .024, respectively) as compared with the cross-suture repair. The cross-suture technique had a load to failure of 81.43 ± 14.31 N; the hashtag, 86.08 ± 23.58 N; and the crosstag, 62.50 ± 12.15 N. The cross-suture and hashtag repairs both resulted in a greater load to failure when compared with the crosstag ( P = .009 and .009, respectively). There was no difference comparing the load required to displace the cross-suture technique 3 mm versus the hashtag or crosstag technique ( P = .564 and .094, respectively). However, when compared with the crosstag technique, the hashtag technique required a significantly greater load to displace the repair 3 mm ( P = .015). Conclusion: This study introduced 2 novel repair techniques—hashtag and crosstag—that did not demonstrate superiority in terms of load to failure or stiffness, but both repairs were statistically superior to the cross-suture repair in terms of displacement after cyclic loading. Considerations that may influence the validity of these techniques include cost, surgical time, and increased technical demand. Clinical Relevance: Radial tears of the meniscus are difficult to repair. Further research into more stable constructs is necessary.


2018 ◽  
Vol 31 (02) ◽  
pp. 155-165 ◽  
Author(s):  
Alissa Burge ◽  
Hollis Potter ◽  
Erin Argentieri

AbstractMagnetic resonance imaging (MRI) provides an effective and noninvasive means by which to evaluate articular cartilage within the knee. Existing techniques can be utilized to detect and monitor longitudinal changes in cartilage status due to injury or progression of degenerative disease. Quantitative MRI (qMRI) techniques can provide a metric by which to evaluate the efficacy of cartilage repair techniques and offer insight into the composition of cartilage and cartilage repair tissue. In this review, we provide background on MR signal generation and decay, the utility of morphologic MRI assessment, and qMRI techniques for the biochemical assessment of cartilage (dGEMRIC, T2, T2*, T1ρ, sodium, gagCEST). Finally, the description and utility of these qMRI techniques for the evaluation of cartilage repair are discussed.


2016 ◽  
Vol 41 (8) ◽  
pp. 815-821 ◽  
Author(s):  
A. K. Agrawal ◽  
I. S. Mat Jais ◽  
E. M. Chew ◽  
A. K. T. Yam ◽  
S. C. Tay

This biomechanical study compared the original Al-Qattan repair with other modifications postulated to reduce bulk and friction, thereby potentially improving outcome. A total of 32 cadaveric digits with intact flexor apparatus were used. In each digit, the flexor digitorum profundus and flexor digitorum superficialis tendons were cut cleanly in Zone 2. We tested Al-Qattan’s technique along with three modifications using stronger suture material and varying the number of strands across the repair site. Of the four repair techniques, the modified Al-Qattan’s technique using two ‘figure of 8’ 4-0 Fiberwire core sutures (Group 4) had the best balance of ultimate tensile strength (50.9 N), 2 mm gapping force (38 N) and friction. The modified technique provided a stronger repair for early active mobilization and has less friction than the originally described repair.


1991 ◽  
Vol 26 (4) ◽  
pp. 1305
Author(s):  
Eun Kyoo Song ◽  
Yong Gi Choi ◽  
Jae Young Hur ◽  
Hyung Soon Kim

Author(s):  
Adrian J. Cassar-Gheiti ◽  
Neil G. Burke ◽  
Theresa M. Cassar-Gheiti ◽  
Kevin J. Mulhall

Sign in / Sign up

Export Citation Format

Share Document