scholarly journals The virtues of idleness: A decidable fragment of resource agent logic

2017 ◽  
Vol 245 ◽  
pp. 56-85 ◽  
Author(s):  
Natasha Alechina ◽  
Nils Bulling ◽  
Brian Logan ◽  
Hoang Nga Nguyen
2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 570
Author(s):  
Chi Zhang ◽  
Changyong Liang ◽  
Chao Zhang ◽  
Yiming Ma

Population aging has become an important factor restricting China′s social and economic development. The smart health and elderly care industry has developed rapidly in the past five years. However, the service resources among various elderly service providers are relatively isolated and scattered. In other words, the core management problem in the components of the smart elderly care service ecosystem is how to deal with the relationships of interest among multiple resource agents. Thus, the main contribution of this study is to employ symbiosis theory and the logistic growth model to construct a model of the evolution of the symbiosis of multiple resource agents in the smart elderly care service ecosystem. Then, we carry out a stability analysis, and analyze the evolutionary model of two resource agents′ symbiosis under different values of interdependence coefficients. Finally, we use computer simulations to dynamically simulate the model and comparatively analyze the population density of the hospital–nursing home symbiotic relationship using real cases in China. According to the study, we find that the enterprise goal in the smart elderly care service ecosystem should be to maximize the overall value of the multiple resource agents, and the result of the symbiotic evolution between different resource agents depends on the symbiotic interdependence coefficient, while the resource agent uses different strategies under different symbiosis models. Therefore, regulation is needed to ensure the relative fairness of the distribution of value co-creation in the smart elderly care service ecosystem when the resource agent takes actions that benefit itself. Of course, when the ecosystem is in a reciprocal symbiosis model, each resource agent benefits from the activities of the other resource agents, which is ideal in reality; in other words, the best symbiosis model between the two resource agents should be the similar reciprocal symbiosis model.


2006 ◽  
Vol 16 (1) ◽  
pp. 47-49
Author(s):  
Angelina Ilic-Stepic ◽  
Dragan Doder

We present a short review of the calculus of constituents.


Author(s):  
Tom Mens ◽  
Ragnhild Van Der Straeten ◽  
Jocelyn Simmonds

As the standard for object-oriented analysis and design, the UML (Unified Modeling Language) metamodel, as well as contemporary CASE (Computer-Aided Software Engineering) tools, must provide adequate and integrated support for all essential aspects of software evolution. This includes version control, traceability, impact analysis, change propagation, inconsistency management, and model refactorings. This chapter focuses on the latter two aspects, and shows how tool support for these aspects can be provided. First, we extend the UML metamodel with support for versioning. Second, we make a classification of the possible inconsistencies of UML design models. Finally, we use the formalism of description logics, a decidable fragment of first-order predicate logic, to express logic rules that can detect and resolve these inconsistencies. We also show how the logic rules are used to propose model refactorings. As a proof of concept, we report on the results of initial experiments with a prototype tool we developed for this approach.


1984 ◽  
Vol 32 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Jussi Ketonen ◽  
Richard Weyhrauch

Author(s):  
Gülçin Bektur

In this study, a multi-resource agent bottleneck generalized assignment problem (MRBGAP) is addressed. In the bottleneck generalized assignment problem (BGAP), more than one job can be assigned to an agent, and the objective function is to minimize the maximum load over all agents. In this problem, multiple resources are considered and the capacity of the agents is dependent on these resources and it has minimum two indices. In addition, agent qualifications are taken into account. In other words, not every job can be assignable to every agent. The problem is defined by considering the problem of assigning jobs to employees in a firm. BGAP has been shown to be NP- hard. Consequently, a multi-start iterated tabu search (MITS) algorithm has been proposed for the solution of large-scale problems. The results of the proposed algorithm are compared by the results of the tabu search (TS) algorithm and mixed integer linear programming (MILP) model.


2020 ◽  
Vol 34 (05) ◽  
pp. 7151-7159
Author(s):  
Thorsten Engesser ◽  
Tim Miller

Epistemic planning can be used to achieve implicit coordination in cooperative multi-agent settings where knowledge and capabilities are distributed between the agents. In these scenarios, agents plan and act on their own without having to agree on a common plan or protocol beforehand. However, epistemic planning is undecidable in general. In this paper, we show how implicit coordination can be achieved in a simpler, propositional setting by using nondeterminism as a means to allow the agents to take the other agents' perspectives. We identify a decidable fragment of epistemic planning that allows for arbitrary initial state uncertainty and non-determinism, but where actions can never increase the uncertainty of the agents. We show that in this fragment, planning for implicit coordination can be reduced to a version of fully observable nondeterministic (FOND) planning and that it thus has the same computational complexity as FOND planning. We provide a small case study, modeling the problem of multi-agent path finding with destination uncertainty in FOND, to show that our approach can be successfully applied in practice.


Sign in / Sign up

Export Citation Format

Share Document