Representation learning with extreme learning machines and empirical mode decomposition for wind speed forecasting methods

2019 ◽  
Vol 277 ◽  
pp. 103176 ◽  
Author(s):  
Hao-Fan Yang ◽  
Yi-Ping Phoebe Chen
2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Aiqing Kang ◽  
Qingxiong Tan ◽  
Xiaohui Yuan ◽  
Xiaohui Lei ◽  
Yanbin Yuan

Hybrid Ensemble Empirical Mode Decomposition (EEMD) and Least Square Support Vector Machine (LSSVM) is proposed to improve short-term wind speed forecasting precision. The EEMD is firstly utilized to decompose the original wind speed time series into a set of subseries. Then the LSSVM models are established to forecast these subseries. Partial autocorrelation function is adopted to analyze the inner relationships between the historical wind speed series in order to determine input variables of LSSVM models for prediction of every subseries. Finally, the superposition principle is employed to sum the predicted values of every subseries as the final wind speed prediction. The performance of hybrid model is evaluated based on six metrics. Compared with LSSVM, Back Propagation Neural Networks (BP), Auto-Regressive Integrated Moving Average (ARIMA), combination of Empirical Mode Decomposition (EMD) with LSSVM, and hybrid EEMD with ARIMA models, the wind speed forecasting results show that the proposed hybrid model outperforms these models in terms of six metrics. Furthermore, the scatter diagrams of predicted versus actual wind speed and histograms of prediction errors are presented to verify the superiority of the hybrid model in short-term wind speed prediction.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yuanyuan Xu ◽  
Genke Yang

Short-term wind speed forecasting plays an increasingly important role in the security, scheduling, and optimization of power systems. As wind speed signals are usually nonlinear and nonstationary, how to accurately forecast future states is a challenge for existing methods. In this paper, for highly complex wind speed signals, we propose a multiple kernel learning- (MKL-) based method to adaptively assign the weights of multiple prediction functions, which extends conventional wind speed forecasting methods using a support vector machine. First, empirical mode decomposition (EMD) is used to decompose complex signals into several intrinsic mode function component signals with different time scales. Then, for each channel, one multiple kernel model is constructed for forecasting the current sequence signal. Finally, several experiments are carried out on different New Zealand wind farm data, and the relevant prediction accuracy indexes and confidence intervals are evaluated. Extensive experimental results show that, compared with existing machine learning methods, the EMD-MKL model proposed in this paper has better performance in terms of the prediction accuracy evaluation indexes and confidence intervals and shows a better ability to generalize.


Sign in / Sign up

Export Citation Format

Share Document