scholarly journals GPU-enabled searches for periodic signals of unknown shape

2021 ◽  
pp. 100511
Author(s):  
M. Gowanlock ◽  
N.R. Butler ◽  
D.E. Trilling ◽  
A. McNeill
Keyword(s):  
Author(s):  
E.B. Solovyeva ◽  
◽  
Yu.M. Inshakov ◽  

General approaches to the analysis of the Gibbs phenomenon for discontinuous periodic signals approximated by the truncated Fourier series are considered. Methods for smoothing the truncated Fourier series and improving its convergence are discussed. The software means for modeling is a universal measuring complex LabVIEW, which possesses a convenient environment for analyzing electrical signals, on the basis of this complex a laboratory experiment is carried out. The advantages of the measuring LabVIEW complex and its capabilities for in-depth study of discontinuous periodic signals are noted.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1695
Author(s):  
Constantin-Octavian Andrei ◽  
Sonja Lahtinen ◽  
Markku Poutanen ◽  
Hannu Koivula ◽  
Jan Johansson

The tenth launch (L10) of the European Global Navigation Satellite System Galileo filled in all orbital slots in the constellation. The launch carried four Galileo satellites and took place in July 2018. The satellites were declared operational in February 2019. In this study, we report on the performance of the Galileo L10 satellites in terms of orbital inclination and repeat period parameters, broadcast satellite clocks and signal in space (SiS) performance indicators. We used all available broadcast navigation data from the IGS consolidated navigation files. These satellites have not been reported in the previous studies. First, the orbital inclination (56.7±0.15°) and repeat period (50680.7±0.22 s) for all four satellites are within the nominal values. The data analysis reveals also 13.5-, 27-, 177- and 354-days periodic signals. Second, the broadcast satellite clocks show different correction magnitude due to different trends in the bias component. One clock switch and several other minor correction jumps have occurred since the satellites were declared operational. Short-term discontinuities are within ±1 ps/s, whereas clock accuracy values are constantly below 0.20 m (root-mean-square—rms). Finally, the SiS performance has been very high in terms of availability and accuracy. Monthly SiS availability has been constantly above the target value of 87% and much higher in 2020 as compared to 2019. Monthly SiS accuracy has been below 0.20 m (95th percentile) and below 0.40 m (99th percentile). The performance figures depend on the content and quality of the consolidated navigation files as well as the precise reference products. Nevertheless, these levels of accuracy are well below the 7 m threshold (95th percentile) specified in the Galileo service definition document.


Author(s):  
Murilo S. Baptista

AbstractThis work shows that chaotic signals with different power spectrum and different positive Lyapunov exponents are robust to linear superposition, meaning that the superposition preserves the Lyapunov exponents and the information content of the source signals, even after being transmitted over non-ideal physical medium. This work tackles with great detail how chaotic signals and their information content are affected when travelling through medium that presents the non-ideal properties of multi-path propagation, noise and chaotic interference (linear superposition), and how this impacts on the proposed communication system. Physical media with other non-ideal properties (dispersion and interference with periodic signals) are also discussed. These wonderful properties that chaotic signals have allow me to propose a novel communication system based on chaos, where information composed from and to multiple users each operating with different base frequencies and that is carried by chaotic wavesignals, can be fully preserved after transmission in the open air wireless physical medium, and it can be trivially decoded with low probability of errors.


2014 ◽  
Vol 31 (3) ◽  
pp. 034207 ◽  
Author(s):  
Fu Wang ◽  
Chong-Qing Wu ◽  
Zhi Wang ◽  
Guo-Dong Liu ◽  
Lan-Lan Liu ◽  
...  
Keyword(s):  

2006 ◽  
Vol 13 (2) ◽  
pp. 104-107 ◽  
Author(s):  
L.B. Felix ◽  
A.M.F.L.M. de Sa ◽  
E.M.A.M. Mendes ◽  
M.F.D. Moraes
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Igor G. Zurbenko ◽  
Amy L. Potrzeba-Macrina

The reconstruction of periodic signals that are embedded in noise is a very important task in many applications. This already difficult task is even more complex when some observations are missed or some are presented irregularly in time. Kolmogorov-Zurbenko (KZ) filtration, a well-developed method, offers a solution to this problem. One section of this paper provides examples of very precise reconstructions of multiple periodic signals covered with high level noise, noise levels that make those signals invisible within the original data. The ability to reconstruct signals from noisy data is applied to the numerical reconstruction of tidal waves in atmospheric pressure. The existence of such waves was proved by well-known naturalist Chapman, but due to the high synoptic fluctuation in atmospheric pressure he was unable to numerically reproduce the waves. Reconstruction of the atmospheric tidal waves reveals a potential intensification on wind speed during hurricanes, which could increase the danger imposed by hurricanes. Due to the periodic structure of the atmospheric tidal wave, it is predictable in time and space, which is important information for the prediction of excess force in developing hurricanes.


2010 ◽  
Vol 139-141 ◽  
pp. 2464-2468
Author(s):  
Yi Ming Wang ◽  
Shao Hua Zhang ◽  
Zhi Hong Zhang ◽  
Jing Li

The precision of transferring paper is key factors to decide the print overprint accuracy, and vibration has an important impact on paper transferring accuracy. Empirical mode decomposition (EMD) can be used to extract the features of vibration test signal. According to the intrinsic mode function (IMF) by extracted, it is useful to analyze the dynamic characteristics of swing gripper arm on motion state. Due to the actual conditions of printing, the vibration signal of Paper-Transferring mechanism system is complex quasi periodic signals. Hilbert-Huang marginal spectrum that is based on empirical mode decomposition can solve the problem which is modals leakage by FFT calculated in frequency domain. Through the experimental research, the phase information of impact load at the moment of grippers opening or closing, which can be used for the optimization design of Paper-Transferring system and the improvement in the accuracy of swing gripper arm.


Sign in / Sign up

Export Citation Format

Share Document