Financial distress prediction using support vector machines: Ensemble vs. individual

2012 ◽  
Vol 12 (8) ◽  
pp. 2254-2265 ◽  
Author(s):  
Jie Sun ◽  
Hui Li
2016 ◽  
Vol 25 (3) ◽  
pp. 417-429
Author(s):  
Chong Wu ◽  
Lu Wang ◽  
Zhe Shi

AbstractFor the financial distress prediction model based on support vector machine, there are no theories concerning how to choose a proper kernel function in a data-dependent way. This paper proposes a method of modified kernel function that can availably enhance classification accuracy. We apply an information-geometric method to modifying a kernel that is based on the structure of the Riemannian geometry induced in the input space by the kernel. A conformal transformation of a kernel from input space to higher-dimensional feature space enlarges volume elements locally near support vectors that are situated around the classification boundary and reduce the number of support vectors. This paper takes the Gaussian radial basis function as the internal kernel. Additionally, this paper combines the above method with the theories of standard regularization and non-dimensionalization to construct the new model. In the empirical analysis section, the paper adopts the financial data of Chinese listed companies. It uses five groups of experiments with different parameters to compare the classification accuracy. We can make the conclusion that the model of modified kernel function can effectively reduce the number of support vectors, and improve the classification accuracy.


2018 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Kyoung-jae Kim ◽  
Kichun Lee ◽  
Hyunchul Ahn

Measuring and managing the financial sustainability of the borrowers is crucial to financial institutions for their risk management. As a result, building an effective corporate financial distress prediction model has been an important research topic for a long time. Recently, researchers are exerting themselves to improve the accuracy of financial distress prediction models by applying various business analytics approaches including statistical and artificial intelligence methods. Among them, support vector machines (SVMs) are becoming popular. SVMs require only small training samples and have little possibility of overfitting if model parameters are properly tuned. Nonetheless, SVMs generally show high prediction accuracy since it can deal with complex nonlinear patterns. Despite of these advantages, SVMs are often criticized because their architectural factors are determined by heuristics, such as the parameters of a kernel function and the subsets of appropriate features and instances. In this study, we propose globally optimized SVMs, denoted by GOSVM, a novel hybrid SVM model designed to optimize feature selection, instance selection, and kernel parameters altogether. This study introduces genetic algorithm (GA) in order to simultaneously optimize multiple heterogeneous design factors of SVMs. Our study applies the proposed model to the real-world case for predicting financial distress. Experiments show that the proposed model significantly improves the prediction accuracy of conventional SVMs.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Guang-Yih Sheu

Concluding the conformity of XBRL (eXtensible Business Reporting Language) instance documents law to the Benford's law yields apparently different results before and after a company's financial distress. These results bring an idea of finding fraudulent documents from the inspection of financial ratios since the unacceptable conformity implies a large likelihood of a fraudulent document. Fuzzy support vector machines models are developed to implement such an idea. The dependent variable is a fuzzy variable quantifying the conformity of an XBRL instance document to the Benford's law; whereas, independent variables are financial ratios. Nevertheless, insufficient data are available to define any membership function for describing the fuzziness in independent and dependent variables, but the interval factor method is introduced to express that fuzziness. Using the resulting fuzzy support vector machines model, it is suggested that the price-to-book ratio versus equity ratio may be used to classify the priority of auditing XBRL instance documents. The misclassification rate is less than 30 \%. In conclusion, a new and promising application of fuzzy support vector machines algorithm has been found in this study.


2011 ◽  
Vol 28 (01) ◽  
pp. 95-109 ◽  
Author(s):  
YU CAO ◽  
GUANGYU WAN ◽  
FUQIANG WANG

Effectively predicting corporate financial distress is an important and challenging issue for companies. The research aims at predicting financial distress using the integrated model of rough set theory (RST) and support vector machine (SVM), in order to find a better early warning method and enhance the prediction accuracy. After several comparative experiments with the dataset of Chinese listed companies, rough set theory is proved to be an effective approach for reducing redundant information. Our results indicate that the SVM performs better than the BPNN when they are used for corporate financial distress prediction.


Sign in / Sign up

Export Citation Format

Share Document