Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems

2013 ◽  
Vol 13 (5) ◽  
pp. 2592-2612 ◽  
Author(s):  
Ali Sadollah ◽  
Ardeshir Bahreininejad ◽  
Hadi Eskandar ◽  
Mohd Hamdi
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zengqiang Mi ◽  
Yikun Xu ◽  
Yang Yu ◽  
Tong Zhao ◽  
Bo Zhao ◽  
...  

Biogeography based optimization (BBO) is a new competitive population-based algorithm inspired by biogeography. It simulates the migration of species in nature to share information. A new hybrid BBO (HBBO) is presented in the paper for constrained optimization. By combining differential evolution (DE) mutation operator with simulated binary crosser (SBX) of genetic algorithms (GAs) reasonably, a new mutation operator is proposed to generate promising solution instead of the random mutation in basic BBO. In addition, DE mutation is still integrated to update one half of population to further lead the evolution towards the global optimum and the chaotic search is introduced to improve the diversity of population. HBBO is tested on twelve benchmark functions and four engineering optimization problems. Experimental results demonstrate that HBBO is effective and efficient for constrained optimization and in contrast with other state-of-the-art evolutionary algorithms (EAs), the performance of HBBO is better, or at least comparable in terms of the quality of the final solutions and computational cost. Furthermore, the influence of the maximum mutation rate is also investigated.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
Qing Duan ◽  
Lu Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
Xingping Sun ◽  
...  

Swarm-based algorithm can successfully avoid the local optimal constraints, thus achieving a smooth balance between exploration and exploitation. Salp swarm algorithm(SSA), as a swarm-based algorithm on account of the predation behavior of the salp, can solve complex daily life optimization problems in nature. SSA also has the problems of local stagnation and slow convergence rate. This paper introduces an improved salp swarm algorithm, which improve the SSA by using the chaotic sequence initialization strategy and symmetric adaptive population division. Moreover, a simulated annealing mechanism based on symmetric perturbation is introduced to enhance the local jumping ability of the algorithm. The improved algorithm is referred to SASSA. The CEC standard benchmark functions are used to evaluate the efficiency of the SASSA and the results demonstrate that the SASSA has better global search capability. SASSA is also applied to solve engineering optimization problems. The experimental results demonstrate that the exploratory and exploitative proclivities of the proposed algorithm and its convergence patterns are vividly improved.


Author(s):  
H. Torab

Abstract Parameter sensitivity for large-scale systems that include several components which interface in series is presented. Large-scale systems can be divided into components or sub-systems to avoid excessive calculations in determining their optimum design. Model Coordination Method of Decomposition (MCMD) is one of the most commonly used methods to solve large-scale engineering optimization problems. In the Model Coordination Method of Decomposition, the vector of coordinating variables can be partitioned into two sub-vectors for systems with several components interacting in series. The first sub-vector consists of those variables that are common among all or most of the elements. The other sub-vector consists of those variables that are common between only two components that are in series. This study focuses on a parameter sensitivity analysis for this special case using MCMD.


2021 ◽  
Vol 67 (3) ◽  
pp. 2845-2862
Author(s):  
Muhammad Asif Jan ◽  
Yasir Mahmood ◽  
Hidayat Ullah Khan ◽  
Wali Khan Mashwani ◽  
Muhammad Irfan Uddin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document