An improved random forest-based rule extraction method for breast cancer diagnosis

2020 ◽  
Vol 86 ◽  
pp. 105941 ◽  
Author(s):  
Sutong Wang ◽  
Yuyan Wang ◽  
Dujuan Wang ◽  
Yunqiang Yin ◽  
Yanzhang Wang ◽  
...  
Author(s):  
A. B Yusuf ◽  
R. M Dima ◽  
S. K Aina

Breast cancer is the second most commonly diagnosed cancer in women throughout the world. It is on the rise, especially in developing countries, where the majority of cases are discovered late. Breast cancer develops when cancerous tumors form on the surface of the breast cells. The absence of accurate prognostic models to assist physicians recognize symptoms early makes it difficult to develop a treatment plan that would help patients live longer. However, machine learning techniques have recently been used to improve the accuracy and speed of breast cancer diagnosis. If the accuracy is flawless, the model will be more efficient, and the solution to breast cancer diagnosis will be better. Nevertheless, the primary difficulty for systems developed to detect breast cancer using machine-learning models is attaining the greatest classification accuracy and picking the most predictive feature useful for increasing accuracy. As a result, breast cancer prognosis remains a difficulty in today's society. This research seeks to address a flaw in an existing technique that is unable to enhance classification of continuous-valued data, particularly its accuracy and the selection of optimal features for breast cancer prediction. In order to address these issues, this study examines the impact of outliers and feature reduction on the Wisconsin Diagnostic Breast Cancer Dataset, which was tested using seven different machine learning algorithms. The results show that Logistic Regression, Random Forest, and Adaboost classifiers achieved the greatest accuracy of 99.12%, on removal of outliers from the dataset. Also, this filtered dataset with feature selection, on the other hand, has the greatest accuracy of 100% and 99.12% with Random Forest and Gradient boost classifiers, respectively. When compared to other state-of-the-art approaches, the two suggested strategies outperformed the unfiltered data in terms of accuracy. The suggested architecture might be a useful tool for radiologists to reduce the number of false negatives and positives. As a result, the efficiency of breast cancer diagnosis analysis will be increased.


Author(s):  
Babafemi Macaulay

Introduction: Breast cancer is the highest cause of cancer-related mortality among women globally. It is documented that 15% of all female cancer is breast cancer. Diagnosis and treatment of breast cancer in its earliest stage remains the only way to improve its outcome and reduce mortality, thus early and accurate diagnosis of breast cancer is important. Early detection of breast cancer among women in Sub-Saharan Africa (SSA) is very challenging to say the least as factors such as low knowledge of breast cancer, lack of awareness of early detection treatment, treatment cost, poor perception of breast cancer, socio-cultural factors such as belief, traditions and fears affect health seeking behaviour of African women but there is limited research efforts in computational approach to diagnosis of breast cancer in SSA. Aim: Here, we propose a novel diagnosis model for African women using Random Forest (RF) machine learning technique. Methods: Study data comprised of technical indicators for breast cancer diagnosis, collected from breast cancer patients attending oncology clinic in Lagos State University teaching hospital. A total of 180 subjects were studied out of which 90 were confirmed cases of breast cancer and 90 were benign. Nine diagnostic parameters were included. These are clump thickness, marginal adhesion, uniformity of cell size, uniformity of cell shape, single epithelial cell, bare nuclei, bland chromatin, normal nucleoli and mitosis. Principal Component Analysis (PCA) was used for feature selection and RF model was used for classification. Results: The RF model gave an accuracy of 98.23%, sensitivity of 95.24%, and specificity of 100.00% and Area under curve (AUC) of 98%. Conclusion: The proposed Random Forest model has a good potential at classifying breast cancer in African women. Adoption of computational diagnosis approach in SSA can lead to early diagnosis and reduction of mortality rate.


Sign in / Sign up

Export Citation Format

Share Document