scholarly journals Learning graph representation with Randomized Neural Network for dynamic texture classification

2021 ◽  
pp. 108035
Author(s):  
Lucas C. Ribas ◽  
Jarbas Joaci de Mesquita Sá ◽  
Antoine Manzanera ◽  
Odemir M. Bruno
2019 ◽  
Vol 135 ◽  
pp. 194-200 ◽  
Author(s):  
Jarbas Joaci de Mesquita Sá Junior ◽  
Lucas Correia Ribas ◽  
Odemir Martinez Bruno

2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.


2021 ◽  
pp. 107611
Author(s):  
Yaomin Chang ◽  
Chuan Chen ◽  
Weibo Hu ◽  
Zibin Zheng ◽  
Xiaocong Zhou ◽  
...  

Author(s):  
Pankaj H. Chandankhede

Texture can be considered as a repeating pattern of local variation of pixel intensities. Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A feedforward neural network is used to train the backpropagation learning algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and the remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. It is observed that the proposed neuro-fuzzy model performed better than the neural network.


Author(s):  
Thanh Tuan Nguyen ◽  
Thanh Phuong Nguyen ◽  
Frédéric Bouchara ◽  
Ngoc-Son Vu

Sign in / Sign up

Export Citation Format

Share Document