Evidence for a physical linkage between galactic cosmic rays and regional climate time series

2007 ◽  
Vol 40 (3) ◽  
pp. 353-364 ◽  
Author(s):  
Charles A. Perry
Solar Physics ◽  
2021 ◽  
Vol 296 (8) ◽  
Author(s):  
Renata Modzelewska ◽  
Agata Krasińska ◽  
Anna Wawrzaszek ◽  
Agnieszka Gil

AbstractWe analyze the scaling properties of the diurnal variation of galactic cosmic rays (GCRs) in Solar Cycle 24 and the solar minima between Solar Cycles 23/24 and 24/25 for 2007 – 2019 based on the count rates of the Oulu, Newark, Hermanus, and Potchefstroom neutron monitors. The scaling features of the GCR diurnal variation are studied by evaluating the Hurst exponent, a quantitative parameter used as an indicator of the state of the randomness of a time series. We estimate the Hurst exponents for GCR diurnal-variation parameters amplitude and phase using structure-function and detrended-fluctuation-analysis methods. Results show that the Hurst exponents for the GCR diurnal variation vary in the range from $\approx0.3$ ≈ 0.3 to $\approx0.9$ ≈ 0.9 , with a general tendency of being systematically above 0.5. It suggests that the GCR diurnal variation reveals a more persistent structure than Brownian motion. However, the time series of GCR diurnal-variation amplitude and phase evolve from a more persistent structure in the solar minimum between Solar Cycles 23/24 in 2007 – 2009 to a more random character in and near the solar maximum 2012 – 2014. This observation seems to be in agreement with the general configuration of the heliosphere through the 11-year solar-activity cycle. Moreover, the temporal profile of the Hurst exponent for GCR diurnal amplitude and phase around the beginning of the solar minimum between Solar Cycles 24/25 (2018 – 2019) differs from the solar minimum between Solar Cycles 23/24 in 2007 – 2009, suggesting a dependence on solar-magnetic polarity. These findings could shed more light on GCR particle transport in the turbulent heliosphere over the solar cycle.


1998 ◽  
Vol 499 (2) ◽  
pp. 735-745 ◽  
Author(s):  
Martin Lemoine ◽  
Elisabeth Vangioni‐Flam ◽  
Michel Casse

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Elena Amato ◽  
Sabrina Casanova

Accelerated particles are ubiquitous in the Cosmos and play a fundamental role in many processes governing the evolution of the Universe at all scales, from the sub-AU scale relevant for the formation and evolution of stars and planets to the Mpc scale involved in Galaxy assembly. We reveal the presence of energetic particles in many classes of astrophysical sources thanks to their production of non-thermal radiation, and we detect them directly at the Earth as cosmic rays. In the last two decades both direct and indirect observations have provided us a wealth of new, high-quality data about cosmic rays and their interactions both in sources and during propagation, in the Galaxy and in the Solar System. Some of the new data have confirmed existing theories about particle acceleration and propagation and their interplay with the environment in which they occur. Some others have brought about interesting surprises, whose interpretation is not straightforward within the standard framework and may require a change of paradigm in terms of our ideas about the origin of cosmic rays of different species or in different energy ranges. In this article, we focus on cosmic rays of galactic origin, namely with energies below a few petaelectronvolts, where a steepening is observed in the spectrum of energetic particles detected at the Earth. We review the recent observational findings and the current status of the theory about the origin and propagation of galactic cosmic rays.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


Science ◽  
2006 ◽  
Vol 314 (5798) ◽  
pp. 439-443 ◽  
Author(s):  
M. Amenomori ◽  
S. Ayabe ◽  
X. J. Bi ◽  
D. Chen ◽  
S. W. Cui ◽  
...  

1999 ◽  
Vol 23 (3) ◽  
pp. 471-474 ◽  
Author(s):  
M.V Alania ◽  
E.S Vernova ◽  
M.I Tyasto ◽  
D.G Baranov

Sign in / Sign up

Export Citation Format

Share Document