Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures

2010 ◽  
Vol 46 (2) ◽  
pp. 150-161 ◽  
Author(s):  
Torsten Schmidt ◽  
Jens Wickert ◽  
Antonia Haser
2015 ◽  
Vol 120 (5) ◽  
pp. 1678-1689 ◽  
Author(s):  
Chi O. Ao ◽  
Jonathan H. Jiang ◽  
Anthony J. Mannucci ◽  
Hui Su ◽  
Olga Verkhoglyadova ◽  
...  

2011 ◽  
Vol 4 (6) ◽  
pp. 1053-1060 ◽  
Author(s):  
R. Biondi ◽  
T. Neubert ◽  
S. Syndergaard ◽  
J. K. Nielsen

Abstract. The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.


2011 ◽  
Vol 4 (1) ◽  
pp. 1371-1395 ◽  
Author(s):  
R. Biondi ◽  
T. Neubert ◽  
S. Syndergaard ◽  
J. Nielsen

Abstract. The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station.


2012 ◽  
Vol 117 (D15) ◽  
pp. n/a-n/a ◽  
Author(s):  
Baijun Tian ◽  
Chi O. Ao ◽  
Duane E. Waliser ◽  
Eric J. Fetzer ◽  
Anthony J. Mannucci ◽  
...  

2014 ◽  
Vol 7 (12) ◽  
pp. 12719-12733 ◽  
Author(s):  
F. Zus ◽  
G. Beyerle ◽  
S. Heise ◽  
T. Schmidt ◽  
J. Wickert

Abstract. The Global Positioning System (GPS) radio occultation (RO) technique provides valuable input for numerical weather prediction and is considered as a data source for climate related research. Numerous studies outline the high precision and accuracy of RO atmospheric soundings in the upper troposphere and lower stratosphere. In this altitude region (8–25 km) RO atmospheric soundings are considered to be free of any systematic error. In the tropical (30° S–30° N) Lower (<8 km) Troposphere (LT), this is not the case; systematic differences with respect to independent data sources exist and are still not completely understood. To date only little attention has been paid to the Open Loop (OL) Doppler model. Here we report on a RO experiment carried out on-board of the twin satellite configuration TerraSAR-X and TanDEM-X which possibly explains to some extent biases in the tropical LT. In two sessions we altered the OL Doppler model aboard TanDEM-X by not more than ±5 Hz with respect to TerraSAR-X and compare collocated atmospheric refractivity profiles. We find a systematic difference in the retrieved refractivity. The bias mainly stems from the tropical LT; there the bias reaches up to ±1%. Hence, we conclude that the negative bias (several Hz) of the OL Doppler model aboard TerraSAR-X introduces a negative bias (in addition to the negative bias which is primarily caused by critical refraction) in our retrieved refractivity in the tropical LT.


2015 ◽  
Vol 8 (8) ◽  
pp. 3385-3393 ◽  
Author(s):  
S. B. Healy ◽  
I. D. Culverwell

Abstract. A modification to the standard bending-angle correction used in GPS radio occultation (GPS-RO) is proposed. The modified approach should reduce systematic residual ionospheric errors in GPS radio occultation climatologies. A new second-order term is introduced in order to account for a known source of systematic error, which is generally neglected. The new term has the form κ(a) × (αL1(a)-αL2(a))2, where a is the impact parameter and (αL1, αL2) are the L1 and L2 bending angles, respectively. The variable κ is a weak function of the impact parameter, a, but it does depend on a priori ionospheric information. The theoretical basis of the new term is examined. The sensitivity of κ to the assumed ionospheric parameters is investigated in one-dimensional simulations, and it is shown that κ &amp;simeq; 10–20 rad−1. We note that the current implicit assumption is κ=0, and this is probably adequate for numerical weather prediction applications. However, the uncertainty in κ should be included in the uncertainty estimates for the geophysical climatologies produced from GPS-RO measurements. The limitations of the new ionospheric correction when applied to CHAMP (Challenging Minisatellite Payload) measurements are noted. These arise because of the assumption that the refractive index is unity at the satellite, made when deriving bending angles from the Doppler shift values.


Sign in / Sign up

Export Citation Format

Share Document