Onboard orbit determination using GPS observations based on the unscented Kalman filter

2010 ◽  
Vol 46 (11) ◽  
pp. 1440-1450 ◽  
Author(s):  
Eun-Jung Choi ◽  
Jae-Cheol Yoon ◽  
Byoung-Sun Lee ◽  
Sang-Young Park ◽  
Kyu-Hong Choi
2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Paula Cristiane Pinto Mesquita Pardal ◽  
Helio Koiti Kuga ◽  
Rodolpho Vilhena de Moraes

Herein, the purpose is to present a Kalman filter based on the sigma point unscented transformation development, aiming at real-time satellite orbit determination using GPS measurements. First, a brief review of the extended Kalman filter will be done. After, the sigma point Kalman filter will be introduced as well as the basic idea of the unscented transformation, in which this filter is based. Following, the unscented Kalman filter applied to orbit determination will be explained. Such explanation encloses formulations about the orbit determination through GPS; the dynamic model; the observation model; the unmodeled acceleration estimation; also an application of this new filter approaches on orbit determination using GPS measurements discussion.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaolin Ning ◽  
Xin Ma ◽  
Cong Peng ◽  
Wei Quan ◽  
Jiancheng Fang

Satellite autonomous orbit determination (OD) is a complex process using filtering method to integrate observation and orbit dynamic equations effectively and estimate the position and velocity of a satellite. Therefore, the filtering method plays an important role in autonomous orbit determination accuracy and time consumption. Extended Kalman filter (EKF), unscented Kalman filter (UKF), and unscented particle filter (UPF) are three widely used filtering methods in satellite autonomous OD, owing to the nonlinearity of satellite orbit dynamic model. The performance of the system based on these three methods is analyzed under different conditions. Simulations show that, under the same condition, the UPF provides the highest OD accuracy but requires the highest computation burden. Conclusions drawn by this study are useful in the design and analysis of autonomous orbit determination system of satellites.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jin Wu ◽  
Ming Liu ◽  
Chengxi Zhang ◽  
Yulong Huang ◽  
Zebo Zhou

Purpose Autonomous orbit determination using geomagnetic measurements is an important backup technique for safe spacecraft navigation with a mere magnetometer. The geomagnetic model is used for the state estimation of orbit elements, but this model is highly nonlinear. Therefore, many efforts have been paid to developing nonlinear filters based on extended Kalman filter (EKF) and unscented Kalman filter (UKF). This paper aims to analyze whether to use UKF or EKF in solving the geomagnetic orbit determination problem and try to give a general conclusion. Design/methodology/approach This paper revisits the problem and from both the theoretical and engineering results, the authors show that the EKF and UKF show identical estimation performances in the presence of nonlinearity in the geomagnetic model. Findings While EKF consumes less computational time, the UKF is computationally inefficient but owns better accuracy for most nonlinear models. It is also noted that some other navigation techniques are also very similar with the geomagnetic orbit determination. Practical implications The intrinsic reason of such equivalence is because of the orthogonality of the spherical harmonics which has not been discovered in previous studies. Thus, the applicability of the presented findings are not limited only to the major problem in this paper but can be extended to all those schemes with spherical harmonic models. Originality/value The results of this paper provide a fact that there is no need to choose UKF as a preferred candidate in orbit determination. As UKF achieves almost the same accuracy as that of EKF, its loss in computational efficiency will be a significant obstacle in real-time implementation.


Sign in / Sign up

Export Citation Format

Share Document