Coastal sea level changes in Europe from GPS, tide gauge, satellite altimetry and GRACE, 1993–2011

2013 ◽  
Vol 51 (6) ◽  
pp. 1019-1028 ◽  
Author(s):  
Guiping Feng ◽  
S. Jin ◽  
T. Zhang
2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2016 ◽  
Vol 29 (13) ◽  
pp. 4801-4816 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Sönke Dangendorf ◽  
Rui M. Ponte ◽  
Marta Marcos

Abstract Understanding the relationship between coastal sea level and the variable ocean circulation is crucial for interpreting tide gauge records and projecting sea level rise. In this study, annual sea level records (adjusted for the inverted barometer effect) from tide gauges along the North American northeast coast over 1980–2010 are compared to a set of data-assimilating ocean reanalysis products as well as a global barotropic model solution forced with wind stress and barometric pressure. Correspondence between models and data depends strongly on model and location. At sites north of Cape Hatteras, the barotropic model shows as much (if not more) skill than ocean reanalyses, explaining about 50% of the variance in the adjusted annual tide gauge sea level records. Additional numerical experiments show that annual sea level changes along this coast from the barotropic model are driven by local wind stress over the continental shelf and slope. This result is interpreted in the light of a simple dynamic framework, wherein bottom friction balances surface wind stress in the alongshore direction and geostrophy holds in the across-shore direction. Results highlight the importance of barotropic dynamics on coastal sea level changes on interannual and decadal time scales; they also have implications for diagnosing the uncertainties in current ocean reanalyses, using tide gauge records to infer past changes in ocean circulation, and identifying the physical mechanisms responsible for projected future regional sea level rise.


2020 ◽  
Author(s):  
Trine S. Dahl-Jensen ◽  
Shfaqat Abbas Khan ◽  
Simon D.P. Williams ◽  
Ole B. Andersen ◽  
Carsten A. Ludwigsen

<p>Recent studies show that under the right conditions relative sea level can be measured using GNSS interferometric reflectometry (GNSS-IR). We test the possibility of using an existing GNET GPS station in Thule, Greenland, to measure inter annual changes in sea level by comparing sea level measurements from GNSS-IR with tide gauge observations and satellite altimetry data. GNET is a network of 56 permanent GPS stations positioned on the bedrock around the edge fo the Greenland ice sheet with the main purpose of monitoring ice mass changes. Currently, Thule is the only location in Greenland where we have both a tide gauge and a GPS station that is suitable for sea level measurement covering the same time period for more than a couple of years. If successful a number of other GPS stations are also expected to be suitable for GNSS-IR measurements of sea level. However, they lack the tide gauge station for testing.<br>We compare the measured sea level with uplift measured using the GPS and modeled from height changes of the Greenland ice sheet as well as sea surface temperatures and modeled sea level changes from gravimetry, in order to investigate the origin of sea level changes in the region.  <br> </p>


2020 ◽  
Author(s):  
Muharrem Hilmi Erkoç ◽  
Uğur Doğan ◽  
Seda Özarpacı ◽  
Hasan Yildiz ◽  
Erdinç Sezen

<p>This study aims to estimate vertical land motion (VLM) at tide gauges (TG), located in the Mediterranean, Aegean and the Marmara Sea coasts of Turkey, from differences of multimission satellite altimetry and TG sea level time series. Initially, relative sea level trends are estimated at 7 tide gauges stations operated by the Turkish General Directorate of Mapping over the period 2001-2019. Subsequently, absolute sea level trends independent from VLM are computed from multimission satellite altimetry data over the same period. We have computed estimates of linear trends of difference time series between altimetry and tide gauge sea level after removing seasonal signals by harmonic analysis from each time series to estimate the vertical land motion (VLM) at tide gauges. Traditional way of VLM determination at tide gauges is to use GPS@TG or preferably CGPS@TG data. We therefore, processed these GPS data, collected over the years by several TG-GPS campaigns and by continuous GPS stations close to the TG processed by GAMIT/GLOBK software. Subsequently, the GPS and CGPS vertical coordinate time series are used to estimate VLM. These two different VLM estimates, one from GPS and CGPS coordinate time series and other from altimetry-TG sea level time series differences are compared.</p><p> </p><p><strong>Keywords: Vertical land motion, Sea Level Changes, Tide gauge, Satellite altimetry, GPS, CGPS </strong></p>


2021 ◽  
Author(s):  
Fabio Mangini ◽  
Antonio Bonaduce ◽  
Léon Chafik ◽  
Laurent Bertino

<p>Satellite altimetry measurements, complemented by in-situ records, have made a fundamental contribution to the understanding of global sea level variability for almost 30 years. Due to land contamination, it performs best over the open ocean. However, over the years, there has been a significant effort to improve the altimetry products in coastal regions. Indeed, altimetry observations could be fruitfully used in the coastal zone to complement the existing tide gauge network which, despite its relevance, does not represent the entire coast. Given the important role of coastal altimetry in oceanography, we have recently decided to check the quality of a new coastal altimetry dataset, ALES, along the coast of Norway. The Norwegian coast is well covered by tide gauges and, therefore, particularly suitable to validate a coastal altimetry dataset. Preliminary results show a good agreement between in-situ and remote sensing sea-level signals in terms of linear trend, seasonal cycle and inter-annual variability. For example, the linear correlation coefficient between the inter-annual sea level variability from altimetry and tide gauges exceeds 0.8. Likewise, the root mean square difference between the two is less than 2 cm at most tide gauge locations. A comparison with Breili et al. (2017) shows that ALES performs better than the standard satellite altimetry products at estimating sea level trends along the coast of Norway. Notably, in the Lofoten region, the difference between the sea level trends computed using ALES and the tide gauges range between 0.0 to 0.7 mm/year, compared to circa 1 to 3 mm/year found by Breili et al. (2017). These preliminary results go in the direction of obtaining an accurate characterization of coastal sea-level at the high latitudes based on coastal altimetry records, which can represent a valuable source of information to reconstruct coastal sea-level signals in areas where in-situ data are missing or inaccurate.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 144-153
Author(s):  
H. Bâki Iz ◽  
T. Y. Yang ◽  
C. K. Shum ◽  
C. Y. Kuo

Abstract Knowledge of vertical crustal movement is fundamental to quantify absolute sea level changes at tide gauge locations as well as for satellite altimetry calibration validations. While GPS measurements at collocated tide gauge stations fulfill this need, currently only few hundred tide gauge stations are equipped with GPS, and their measurements do not span a long period of time. In the past, several studies addressed this problem by calculating relative and geocentric trends from the tide gauge and satellite altimetry measurements respectively, and then difference the two trends to calculate the rate of changes at the tide gauge stations. However, this approach is suboptimal. This study offers an optimal statistical protocol based on the method of condition equations with unknown parameters. An example solution demonstrates the proposed mathematical and statistical models’ optimality in estimating vertical crustal movement and its standard error by comparing them with the results of current methods. The proposed model accounts for the effect of autocorrelations in observed tide gauge and satellite altimetry sea level time series, adjusts observed corrections such as inverted barometer effects, and constraints tide gauge and satellite altimeter measurement to close. The new model can accommodate estimating other systematic effects such as pole tides that are not eliminated by differencing.


Sign in / Sign up

Export Citation Format

Share Document