extreme sea levels
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Melissa Wood ◽  
Ivan D. Haigh ◽  
Quan Quan Le ◽  
Hung Nghia Nguyen ◽  
Hoang Ba Tran ◽  
...  

Abstract. It is vital to robustly estimate the risks posed by extreme sea levels, especially in tropical regions where cyclones can generate large storm surges and observations are too limited in time and space to deliver reliable analyses. To address this limitation for the South China Sea region, we force a hydrodynamic model with a new synthetic database representing 10,000 years of past/present and future tropical cyclone activity, to investigate climate change impacts on extreme sea levels forced by storm surges (± tides). We show that, as stronger and more numerous tropical cyclones likely pass through this region over the next 30 years, both the spatial extent and severity of storm surge hazard increases. While extreme storm surge events in this location become generally a more frequent occurrence in the future, larger storm surges around Vietnam and China coastlines are projected to regionally amplify this hazard. This threatens low-lying, densely-populated areas such as the Red and Mekong River deltas, while sections of the Cambodian and Thai coastline face previously unseen storm surge hazards. These future hazards strongly signal that coastal flood management and adaptation in these areas should be reviewed for their resilience against future extreme sea levels.


2021 ◽  
Author(s):  
Ivan Haigh ◽  
Marta Marcos ◽  
Stefan Talke ◽  
Philip Woodworth ◽  
John Hunter ◽  
...  

This paper describes a major update to the quasi-global, higher-frequency sea-level dataset known as GESLA (Global Extreme Sea Level Analysis). Versions 1 (released 2009) and 2 (released 2016) of the dataset have been used in many published studies, across a wide range of oceanographic and coastal engineering-related investigations concerned with evaluating tides, storm surges, extreme sea levels and other related processes. The third version of the dataset (released 2021), presented here, contains twice the number of years of data (91,021), and nearly four times the number of records (5,119), compared to version 2. The dataset consists of records obtained from multiple sources around the world. This paper describes the assembly of the dataset, its processing and its format, and outlines potential future improvements. The dataset is available from https://www.gesla.org.


2021 ◽  
Author(s):  
Alejandra Rodríguez Enríquez ◽  
Thomas Wahl ◽  
Hannah Baranes ◽  
Stefan A Talke ◽  
Philip Mark Orton ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2915
Author(s):  
Md. Anowarul Islam ◽  
Tomonori Sato

The coastal area of Bangladesh is highly vulnerable to extreme sea levels because of high population exposure in the low-lying deltaic coast. Since the area lies in the monsoon region, abundant precipitation and the resultant increase in river discharge have raised a flood risk for the coastal area. Although the effects of atmospheric forces have been investigated intensively, the influence of precipitation on extreme sea levels in this area remains unknown. In this study, the influence of precipitation on extreme sea levels for three different stations were investigated by multivariate regression using the meteorological drivers of precipitation, sea level pressure, and wind. The prediction of sea levels considering precipitation effects outperformed predictions without precipitation. The benefit of incorporating precipitation was greater at Cox’s Bazar than at Charchanga and Khepupara, reflecting the hilly landscape at Cox’s Bazar. The improved prediction skill was mainly confirmed during the monsoon season, when strong precipitation events occur. It was also revealed that the precipitation over the Bangladesh area is insensitive to the El Niño-Southern Oscillation and Indian Ocean Dipole mode. The precipitation over northern Bangladesh tended to be high in the year of a high sea surface temperature over the Bay of Bengal, which may have contributed to the variation in sea level. The findings suggest that the effect of precipitation plays an essential role in enhancing sea levels during many extreme events. Therefore, incorporating the effect of terrestrial precipitation is essential for the better prediction of extreme sea levels, which helps coastal management and reduction of hazards.


2021 ◽  
Vol 11 (9) ◽  
pp. 746-751
Author(s):  
Claudia Tebaldi ◽  
Roshanka Ranasinghe ◽  
Michalis Vousdoukas ◽  
D. J. Rasmussen ◽  
Ben Vega-Westhoff ◽  
...  

AbstractThe Paris agreement focused global climate mitigation policy on limiting global warming to 1.5 or 2 °C above pre-industrial levels. Consequently, projections of hazards and risk are increasingly framed in terms of global warming levels rather than emission scenarios. Here, we use a multimethod approach to describe changes in extreme sea levels driven by changes in mean sea level associated with a wide range of global warming levels, from 1.5 to 5 °C, and for a large number of locations, providing uniform coverage over most of the world’s coastlines. We estimate that by 2100 ~50% of the 7,000+ locations considered will experience the present-day 100-yr extreme-sea-level event at least once a year, even under 1.5 °C of warming, and often well before the end of the century. The tropics appear more sensitive than the Northern high latitudes, where some locations do not see this frequency change even for the highest global warming levels.


2021 ◽  
pp. 103529
Author(s):  
Jean-Philippe Belliard ◽  
Luis Dominguez-Granda ◽  
John A. Ramos-Veliz ◽  
Andrea M. Rosado-Moncayo ◽  
Jorge Nath ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 774
Author(s):  
Jeremy Rohmer ◽  
Daniel Lincke ◽  
Jochen Hinkel ◽  
Gonéri Le Cozannet ◽  
Erwin Lambert ◽  
...  

Global scale assessments of coastal flood damage and adaptation costs under 21st century sea-level rise are associated with a wide range of uncertainties, including those in future projections of socioeconomic development (shared socioeconomic pathways (SSP) scenarios), of greenhouse gas concentrations (RCP scenarios), and of sea-level rise at regional scale (RSLR), as well as structural uncertainties related to the modelling of extreme sea levels, data on exposed population and assets, and the costs of flood damages, etc. This raises the following questions: which sources of uncertainty need to be considered in such assessments and what is the relative importance of each source of uncertainty in the final results? Using the coastal flood module of the Dynamic Interactive Vulnerability Assessment modelling framework, we extensively explore the impact of scenario, data and model uncertainties in a global manner, i.e., by considering a large number (>2000) of simulation results. The influence of the uncertainties on the two risk metrics of expected annual damage (EAD), and adaptation costs (AC) related to coastal protection is assessed at global scale by combining variance-based sensitivity indices with a regression-based machine learning technique. On this basis, we show that the research priorities in terms of future data/knowledge acquisition to reduce uncertainty on EAD and AC differ depending on the considered time horizon. In the short term (before 2040), EAD uncertainty could be significantly decreased by 25 and 75% if the uncertainty of the translation of physical damage into costs and of the modelling of extreme sea levels could respectively be reduced. For AC, it is RSLR that primarily drives short-term uncertainty (with a contribution ~50%). In the longer term (>2050), uncertainty in EAD could be largely reduced by 75% if the SSP scenario could be unambiguously identified. For AC, it is the RCP selection that helps reducing uncertainty (up to 90% by the end of the century). Altogether, the uncertainty in future human activities (SSP and RCP) are the dominant source of the uncertainty in future coastal flood risk.


2021 ◽  
Author(s):  
Tihana Dević ◽  
Jadranka Šepić ◽  
Darko Koračin

<p>An objective method for tracking pathways of cyclone centres over Europe was developed and applied to the ERA-Interim reanalysis atmospheric data (1979-2014). The method was used to determine trajectories of those Mediterranean cyclones which generated extreme sea levels along the northern and the eastern Adriatic coast during the period from 1979 to 2014. Extreme events were defined as periods during which sea level was above 99.95 percentile value of time series of hourly sea-level data measured at the Venice (northern Adriatic), Split (middle eastern Adriatic) and Dubrovnik (south-eastern Adriatic) tide-gauge stations. The cyclone pathways were tracked backwards from the moment closest to the moment of maximum sea level up to the cyclone origin time, or at most, up to 72 hours prior the occurrence of the sea-level maximum.</p><p>Our results point out that extreme sea levels in Venice normally appear during synoptic situations in which a cyclone centre is located to the south-west and north-west of Venice, i.e., when it can be found over the Gulf of Genoa, or the Alps. On the contrary, extreme sea levels in Dubrovnik are usually associates with cyclone centres above the middle Adriatic, whereas floods in Split seem to appear during both above-described types of situations.</p><p>Occurrence times and intensity of cyclones and extreme sea-levels was further associated with the NAO index. It has been shown that the deepest cyclones and corresponding extreme floods tend to occur during the negative NAO phase.   </p>


2021 ◽  
Author(s):  
Christian Ferrarin ◽  
Piero Lionello ◽  
Mirko Orlic ◽  
Fabio Raicich ◽  
Gianfausto Salvadori

<p><span><span>Extreme sea levels at the coast result from the combination of astronomical tides with atmospherically forced fluctuations at multiple time scales. Seiches, river floods, waves, inter-annual and inter-decad</span></span><span><span>al dynamics and relative sea-level rise can also contribute to the total sea level. While tides are usually well described and predicted, the effect of the different atmospheric contributions to the sea level and their trends are still not well understood. Meso-scale atmospheric disturbances, synoptic-scale phenomena and planetary atmospheric waves (PAW) act at different temporal and spatial scales and thus generate sea-level disturbances at different frequencies. In this study, we analyze the 1872-2019 sea-level time series in Venice (northern Adriatic Sea, Italy) to investigate the relative role of the different driving factors in the extreme sea levels distribution. The adopted approach consists in 1) isolating the different contributions to the sea level by applying least-squares fitting and Fourier decomposition; 2) performing a multivariate statistical analysis which enables the dependencies among driving factors and their joint probability of occurrence to be described; 3) analyzing temporal changes in extreme sea levels and extrapolating possible future tendencies. The results highlight the fact that the most extreme sea levels are mainly dominated by the non-tidal residual, while the tide plays a secondary role. The non-tidal residual of the extreme sea levels is attributed mostly to PAW surge and storm surge, with the latter component becoming dominant for the most extreme events. The results of temporal evolution analysis confirm previous studies according to which the relative sea-level rise is the major driver of the increase in the frequency of floods in Venice over the last century. However, also long term variability in the storm activity impacted the frequency and intensity of extreme sea levels and have contributed to an increase of floods in Venice during the fall and winter months of the last three decades.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document