scholarly journals Annual Sea Level Changes on the North American Northeast Coast: Influence of Local Winds and Barotropic Motions

2016 ◽  
Vol 29 (13) ◽  
pp. 4801-4816 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Sönke Dangendorf ◽  
Rui M. Ponte ◽  
Marta Marcos

Abstract Understanding the relationship between coastal sea level and the variable ocean circulation is crucial for interpreting tide gauge records and projecting sea level rise. In this study, annual sea level records (adjusted for the inverted barometer effect) from tide gauges along the North American northeast coast over 1980–2010 are compared to a set of data-assimilating ocean reanalysis products as well as a global barotropic model solution forced with wind stress and barometric pressure. Correspondence between models and data depends strongly on model and location. At sites north of Cape Hatteras, the barotropic model shows as much (if not more) skill than ocean reanalyses, explaining about 50% of the variance in the adjusted annual tide gauge sea level records. Additional numerical experiments show that annual sea level changes along this coast from the barotropic model are driven by local wind stress over the continental shelf and slope. This result is interpreted in the light of a simple dynamic framework, wherein bottom friction balances surface wind stress in the alongshore direction and geostrophy holds in the across-shore direction. Results highlight the importance of barotropic dynamics on coastal sea level changes on interannual and decadal time scales; they also have implications for diagnosing the uncertainties in current ocean reanalyses, using tide gauge records to infer past changes in ocean circulation, and identifying the physical mechanisms responsible for projected future regional sea level rise.

2017 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. Coastal sea-level trends in the Baltic Sea display decadal-scale variations around a centennial trend. These long-term centennial trends are likely determined by climate change and centennial vertical land movements. In this study, we analyse the spatial and temporal characteristics of the decadal trend variations and investigate the links between coastal sea-level trends and atmospheric forcing on decadal time scale. This investigation mainly focuses on the identification of the possible impact of an underlying factor, apart from the effect of atmospheric circulation, on decadal sea-level trend anomalies. For this analysis, we use monthly means of long tide gauge records and gridded sea-surface-height (SSH) reconstructions. The SSH time series are constructed over the past 64 years and based on tide-gauge records and satellite altimetry. Climatic data sets are composed of the North Atlantic Oscillation (NAO) index, the Atlantic Multidecadal Oscillation (AMO) index, gridded sea-level-pressure (SLP), gridded near-surface air temperature and gridded precipitation fields. The analysis indicates that atmospheric forcing is a driving factor of decadal sea-level trends. However, its effect is geographically heterogeneous. The Baltic Sea can be classified into two parts according to atmospheric impacts on decadal sea-level trends: one part consists of the northern and eastern regions of the Baltic Sea, where this impact is large. The other one covers the southern Baltic Sea area, with a smaller impact of the atmospheric circulation. To identify the influence of the large-scale factors other than the simultaneous effect of atmospheric circulation on the Baltic Sea level trends, we filter out the direct signature of atmospheric circulation on the Baltic Sea level by a multivariate linear regression model and analysed the residuals of this regression model. These residuals hint at a common underlying factor that coherently drives the decadal sea-level trends into the similar direction in the whole Baltic Sea region. We found that this underlying effect is partly a consequence of precipitation contribution to the Baltic Sea basin in the previous season. The investigation on the relation between the AMO-index and sea-level trends implies that this detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.


2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


2015 ◽  
Vol 28 (11) ◽  
pp. 4585-4594 ◽  
Author(s):  
Tatsuo Suzuki ◽  
Masayoshi Ishii

Abstract Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.


2019 ◽  
Vol 19 (5) ◽  
pp. 1067-1086 ◽  
Author(s):  
Frank Colberg ◽  
Kathleen L. McInnes ◽  
Julian O'Grady ◽  
Ron Hoeke

Abstract. Projections of sea level rise (SLR) will lead to increasing coastal impacts during extreme sea level events globally; however, there is significant uncertainty around short-term coastal sea level variability and the attendant frequency and severity of extreme sea level events. In this study, we investigate drivers of coastal sea level variability (including extremes) around Australia by means of historical conditions as well as future changes under a high greenhouse gas emissions scenario (RCP 8.5). To do this, a multi-decade hindcast simulation is validated against tide gauge data. The role of tide–surge interaction is assessed and found to have negligible effects on storm surge characteristic heights over most of the coastline. For future projections, 20-year-long simulations are carried out over the time periods 1981–1999 and 2081–2099 using atmospheric forcing from four CMIP5 climate models. Changes in extreme sea levels are apparent, but there are large inter-model differences. On the southern mainland coast all models simulated a southward movement of the subtropical ridge which led to a small reduction in sea level extremes in the hydrodynamic simulations. Sea level changes over the Gulf of Carpentaria in the north are largest and positive during austral summer in two out of the four models. In these models, changes to the northwest monsoon appear to be the cause of the sea level response. These simulations highlight a sensitivity of this semi-enclosed gulf to changes in large-scale dynamics in this region and indicate that further assessment of the potential changes to the northwest monsoon in a larger multi-model ensemble should be investigated, together with the northwest monsoon's effect on extreme sea levels.


Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 315-335 ◽  
Author(s):  
Robert Marsh ◽  
Ivan D. Haigh ◽  
Stuart A. Cunningham ◽  
Mark E. Inall ◽  
Marie Porter ◽  
...  

Abstract. The European Slope Current provides a shelf-edge conduit for Atlantic Water, a substantial fraction of which is destined for the northern North Sea, with implications for regional hydrography and ecosystems. Drifters drogued at 50 m in the European Slope Current at the Hebridean shelf break follow a wide range of pathways, indicating highly variable Atlantic inflow to the North Sea. Slope Current pathways, timescales and transports over 1988–2007 are further quantified in an eddy-resolving ocean model hindcast. Particle trajectories calculated with model currents indicate that Slope Current water is largely recruited from the eastern subpolar North Atlantic. Observations of absolute dynamic topography and climatological density support theoretical expectations that Slope Current transport is to first order associated with meridional density gradients in the eastern subpolar gyre, which support a geostrophic inflow towards the slope. In the model hindcast, Slope Current transport variability is dominated by abrupt 25–50 % reductions of these density gradients over 1996–1998. Concurrent changes in wind forcing, expressed in terms of density gradients, act in the same sense to reduce Slope Current transport. This indicates that coordinated regional changes of buoyancy and wind forcing acted together to reduce Slope Current transport during the 1990s. Particle trajectories further show that 10–40 % of Slope Current water is destined for the northern North Sea within 6 months of passing to the west of Scotland, with a general decline in this percentage over 1988–2007. Salinities in the Slope Current correspondingly decreased, evidenced in ocean analysis data. Further to the north, in the Atlantic Water conveyed by the Slope Current through the Faroe–Shetland Channel (FSC), salinity is observed to increase over this period while declining in the hindcast. The observed trend may have broadly compensated for a decline in the Atlantic inflow, limiting salinity changes in the northern North Sea during this period. Proxies for both Slope Current transport and Atlantic inflow to the North Sea are sought in sea level height differences across the FSC and between Shetland and the Scottish mainland (Wick). Variability of Slope Current transport on a wide range of timescales, from seasonal to multi-decadal, is implicit in sea level differences between Lerwick (Shetland) and Tórshavn (Faroes), in both tide gauge records from 1957 and a longer model hindcast spanning 1958–2012. Wick–Lerwick sea level differences in tide gauge records from 1965 indicate considerable decadal variability in the Fair Isle Current transport that dominates Atlantic inflow to the northwest North Sea, while sea level differences in the hindcast are dominated by strong seasonal variability. Uncertainties in the Wick tide gauge record limit confidence in this proxy.


Ocean Science ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 175-185 ◽  
Author(s):  
C. G. Piecuch ◽  
R. M. Ponte

Abstract. A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian inland seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin) is identified based on Gravity Recovery and Climate Experiment (GRACE) retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is correlated with the North Atlantic Oscillation and is associated with net flows into and out of the Canadian inland seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, probably related to wind setup, as well as over the northern North Atlantic Ocean, possibly mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian inland seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.


2021 ◽  
Vol 13 (8) ◽  
pp. 3733-3753
Author(s):  
Denise Dettmering ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Marcello Passaro ◽  
Christian Schwatke ◽  
...  

Abstract. Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal, and economic issues. This article reports about a new sea level dataset for the North Sea (named North SEAL) of monthly sea level anomalies (SLAs), absolute sea level trends, and amplitudes of the mean annual sea level cycle over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data preprocessed with coastal dedicated approaches and gridded with an innovative least-squares procedure including an advanced outlier detection to a 6–8 km wide triangular mesh. The comparison of SLAs and tide gauge time series shows good consistency, with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8 %–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best consistency with a median difference of 0.04±1.15 mm yr−1 is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections, and studies on coastal adaptation measures. The North SEAL data are available at https://doi.org/10.17882/79673 (Müller et al., 2021).


2021 ◽  
Author(s):  
Denise Dettmering ◽  
Felix L. Müller ◽  
Julius Oelsmann ◽  
Marcello Passaro ◽  
Christian Schwatke ◽  
...  

Abstract. Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal and economic issues. This article reports about a new sea level dataset for the North Sea (named NorthSEAL) of monthly sea level anomalies (SLA), absolute sea level trends and sea level mean annual amplitudes over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data, preprocessed 5 with coastal dedicated approaches and gridded with innovative methods to a 6–8 km wide triangular mesh. The comparison of SLA and tide gauge time series shows a good consistency with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best 10 consistency with a median difference of 0.04 ± 1.15 mm/year is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections and studies on coastal adaptation measures. The NorthSEAL data is available at https://doi.org/10.17882/79673 (Müller et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document